比较CPU和GPU中的矩阵计算(cpu对比gpu)
ztj100 2024-11-03 16:16 16 浏览 0 评论
GPU 计算与 CPU 相比能够快多少? 在本文中,我将使用 Python 和 PyTorch 线性变换函数对其进行测试。
以下是测试机配置:
CPU:英特尔 i7 6700k (4c/8t)
GPU:RTX 3070 TI(6,144 个 CUDA 核心和 192 个 Tensor 核心)
内存:32G
操作系统:Windows 10
无论是cpu和显卡都是目前常见的配置,并不是顶配(等4090能够正常发货后我们会给出目前顶配的测试结果)
NVIDIA GPU 术语解释
CUDA 是Compute Unified Device Architecture的缩写。 可以使用 CUDA 直接访问 NVIDIA GPU 指令集,与专门为构建游戏引擎而设计的 DirectX 和 OpenGL 不同,CUDA 不需要用户理解复杂的图形编程语言。但是需要说明的是CUDA为N卡独有,所以这就是为什么A卡对于深度学习不友好的原因之一。
Tensor Cores是加速矩阵乘法过程的处理单元。
例如,使用 CPU 或 CUDA 将两个 4×4 矩阵相乘涉及 64 次乘法和 48 次加法,每个时钟周期一次操作,而Tensor Cores每个时钟周期可以执行多个操作。
上面的图来自 Nvidia 官方对 Tensor Cores 进行的介绍视频
CUDA 核心和 Tensor 核心之间有什么关系? Tensor Cores 内置在 CUDA 核心中,当满足某些条件时,就会触发这些核心的操作。
测试方法
GPU的计算速度仅在某些典型场景下比CPU快。在其他的一般情况下,GPU的计算速度可能比CPU慢!但是CUDA在机器学习和深度学习中被广泛使用,因为它在并行矩阵乘法和加法方面特别出色。
上面的操作就是我们常见的线性操作,公式是这个
这就是PyTorch的线性函数torch.nn.Linear的操作。可以通过以下代码将2x2矩阵转换为2x3矩阵:
import torch
in_row,in_f,out_f = 2,2,3
tensor = torch.randn(in_row,in_f)
l_trans = torch.nn.Linear(in_f,out_f)
print(l_trans(tensor))
CPU 基线测试
在测量 GPU 性能之前,我需要线测试 CPU 的基准性能。
为了给让芯片满载和延长运行时间,我增加了in_row、in_f、out_f个数,也设置了循环操作10000次。
import torch
import torch.nn
import timein_row, in_f, out_f = 256, 1024, 2048
loop_times = 10000
现在,让我们看看CPU完成10000个转换需要多少秒:
s = time.time()
tensor = torch.randn(in_row, in_f).to('cpu')
l_trans = torch.nn.Linear(in_f, out_f).to('cpu')
for _ in range(loop_times):
l_trans(tensor)
print('cpu take time:',time.time()-s)
#cpu take time: 55.70971965789795
可以看到cpu花费55秒
GPU计算
为了让GPU的CUDA执行相同的计算,我只需将. To (' cpu ')替换为. cuda()。另外,考虑到CUDA中的操作是异步的,我们还需要添加一个同步语句,以确保在所有CUDA任务完成后打印使用的时间。
s = time.time()
tensor = torch.randn(in_row, in_f).cuda()
l_trans = torch.nn.Linear(in_f, out_f).cuda()
for _ in range(loop_times):
l_trans(tensor)
torch.cuda.synchronize()
print('CUDA take time:',time.time()-s)
#CUDA take time: 1.327127456665039
并行运算只用了1.3秒,几乎是CPU运行速度的42倍。这就是为什么一个在CPU上需要几天训练的模型现在在GPU上只需要几个小时。因为并行的简单计算式GPU的强项
如何使用Tensor Cores
CUDA已经很快了,那么如何启用RTX 3070Ti的197Tensor Cores?,启用后是否会更快呢?在PyTorch中我们需要做的是减少浮点精度从FP32到FP16。,也就是我们说的半精度或者叫混合精度
s = time.time()
tensor = torch.randn(in_row, in_f).cuda().half()
layer = torch.nn.Linear(in_f, out_f).cuda().half()
for _ in range(loop_times):
layer(tensor)
torch.cuda.synchronize()
print('CUDA with tensor cores take time:',time.time()-s)
#CUDA with tensor cores take time:0.5381264686584473
又是2.6倍的提升。
总结
在本文中,通过在CPU、GPU CUDA和GPU CUDA +Tensor Cores中调用PyTorch线性转换函数来比较线性转换操作。下面是一个总结的结果:
NVIDIA的CUDA和Tensor Cores确实大大提高了矩阵乘法的性能。
后面我们会有两个方向的更新
1、介绍一些简单的CUDA操作(通过Numba),这样可以让我们了解一些细节
2、我们会在拿到4090后发布一个专门针对深度学习的评测,这样可以方便大家购买可选择
本文作者:Andrew Zhu
相关推荐
- Vue 技术栈(全家桶)(vue technology)
-
Vue技术栈(全家桶)尚硅谷前端研究院第1章:Vue核心Vue简介官网英文官网:https://vuejs.org/中文官网:https://cn.vuejs.org/...
- vue 基础- nextTick 的使用场景(vue的nexttick这个方法有什么用)
-
前言《vue基础》系列是再次回炉vue记的笔记,除了官网那部分知识点外,还会加入自己的一些理解。(里面会有部分和官网相同的文案,有经验的同学择感兴趣的阅读)在开发时,是不是遇到过这样的场景,响应...
- vue3 组件初始化流程(vue组件初始化顺序)
-
学习完成响应式系统后,咋们来看看vue3组件的初始化流程既然是看vue组件的初始化流程,咋们先来创建基本的代码,跑跑流程(在app.vue中写入以下内容,来跑流程)...
- vue3优雅的设置element-plus的table自动滚动到底部
-
场景我是需要在table最后添加一行数据,然后把滚动条滚动到最后。查网上的解决方案都是读取html结构,暴力的去获取,虽能解决问题,但是不喜欢这种打补丁的解决方案,我想着官方应该有相关的定义,于是就去...
- Vue3为什么推荐使用ref而不是reactive
-
为什么推荐使用ref而不是reactivereactive本身具有很大局限性导致使用过程需要额外注意,如果忽视这些问题将对开发造成不小的麻烦;ref更像是vue2时代optionapi的data的替...
- 9、echarts 在 vue 中怎么引用?(必会)
-
首先我们初始化一个vue项目,执行vueinitwebpackechart,接着我们进入初始化的项目下。安装echarts,npminstallecharts-S//或...
- 无所不能,将 Vue 渲染到嵌入式液晶屏
-
该文章转载自公众号@前端时刻,https://mp.weixin.qq.com/s/WDHW36zhfNFVFVv4jO2vrA前言...
- vue-element-admin 增删改查(五)(vue-element-admin怎么用)
-
此篇幅比较长,涉及到的小知识点也比较多,一定要耐心看完,记住学东西没有耐心可不行!!!一、添加和修改注:添加和编辑用到了同一个组件,也就是此篇文章你能学会如何封装组件及引用组件;第二能学会async和...
- 最全的 Vue 面试题+详解答案(vue面试题知识点大全)
-
前言本文整理了...
- 基于 vue3.0 桌面端朋友圈/登录验证+60s倒计时
-
今天给大家分享的是Vue3聊天实例中的朋友圈的实现及登录验证和倒计时操作。先上效果图这个是最新开发的vue3.x网页端聊天项目中的朋友圈模块。用到了ElementPlus...
- 不来看看这些 VUE 的生命周期钩子函数?| 原力计划
-
作者|huangfuyk责编|王晓曼出品|CSDN博客VUE的生命周期钩子函数:就是指在一个组件从创建到销毁的过程自动执行的函数,包含组件的变化。可以分为:创建、挂载、更新、销毁四个模块...
- Vue3.5正式上线,父传子props用法更丝滑简洁
-
前言Vue3.5在2024-09-03正式上线,目前在Vue官网显最新版本已经是Vue3.5,其中主要包含了几个小改动,我留意到日常最常用的改动就是props了,肯定是用Vue3的人必用的,所以针对性...
- Vue 3 生命周期完整指南(vue生命周期及使用)
-
Vue2和Vue3中的生命周期钩子的工作方式非常相似,我们仍然可以访问相同的钩子,也希望将它们能用于相同的场景。...
- 救命!这 10 个 Vue3 技巧藏太深了!性能翻倍 + 摸鱼神器全揭秘
-
前端打工人集合!是不是经常遇到这些崩溃瞬间:Vue3项目越写越卡,组件通信像走迷宫,复杂逻辑写得脑壳疼?别慌!作为在一线摸爬滚打多年的老前端,今天直接甩出10个超实用的Vue3实战技巧,手把...
- 怎么在 vue 中使用 form 清除校验状态?
-
在Vue中使用表单验证时,经常需要清除表单的校验状态。下面我将介绍一些方法来清除表单的校验状态。1.使用this.$refs...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Vue 技术栈(全家桶)(vue technology)
- vue 基础- nextTick 的使用场景(vue的nexttick这个方法有什么用)
- vue3 组件初始化流程(vue组件初始化顺序)
- vue3优雅的设置element-plus的table自动滚动到底部
- Vue3为什么推荐使用ref而不是reactive
- 9、echarts 在 vue 中怎么引用?(必会)
- 无所不能,将 Vue 渲染到嵌入式液晶屏
- vue-element-admin 增删改查(五)(vue-element-admin怎么用)
- 最全的 Vue 面试题+详解答案(vue面试题知识点大全)
- 基于 vue3.0 桌面端朋友圈/登录验证+60s倒计时
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)