Einops张量操作快速入门(张量分析简明教程)
ztj100 2024-11-03 16:15 28 浏览 0 评论
张量,即多维数组,是现代机器学习框架的支柱。操纵这些张量可能会变得冗长且难以阅读,尤其是在处理高维数据时。Einops 使用简洁的符号简化了这些操作。
NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割
Einops (Einstein-Inspired Notation for operations),受爱因斯坦运算符号启发的张量操作库,已成为AI工程师无缝操控张量以产生AI的必备工具。这是我编写的简单教程,旨在帮助没有 Einops 经验的人创建复杂而实用的神经网络。
在开始之前,让我们先使用 pip 安装 Einops:
pip install einops
1、Einops的3个基本操作
Einops 围绕三个核心操作:重排、规约和重复。让我们通过示例深入探讨每个操作。
1.1 重排
重排(rearrange)让你可以通过一个容易看懂的操作符改变张量的维度和形状。
import torch
from einops import rearrange
# Create a 4D tensor of shape (batch, channels, height, width)
tensor = torch.rand(10, 3, 32, 32) # Example: a batch of 10 RGB images 32x32
# Rearrange to (batch, height, width, channels) for image processing libraries that expect this format
rearranged = rearrange(tensor, 'b c h w -> b h w c')
上面的操作将通道 c移至最后一个维度,这是 matplotlib 等库中图像处理的常见要求。
1.2 规约
规约(reduce) 对张量的指定维度(如总和、平均值或最大值)应用规约操作,从而简化张量聚合任务。
from einops import reduce
# Reduce the tensor's channel dimension by taking the mean, resulting in a grayscale image
grayscale = reduce(tensor, 'b c h w -> b h w', 'mean')
此操作通过对通道 c 进行平均,将我们的 RGB 图像转换为灰度图像。
1.3 重复
重复(repeat)沿任意维度复制张量,从而轻松实现数据增强或张量扩展。
from einops import repeat
# Repeat each image in the batch 4 times along a new dimension
repeated = repeat(tensor, 'b c h w -> (repeat b) c h w', repeat=4)
上面的操作通过重复每个图像来增加数据集的大小,这对于数据增强非常有用。
2、Einops的高级模式
Einops 以其直观处理复?杂重塑模式的能力而出名。
2.1 拆分和合并通道
将 RGB 通道拆分为单独的张量,对其进行处理,然后合并回去。
# Split channels
red, green, blue = rearrange(tensor, 'b (c rgb) h w -> rgb b c h w', rgb=3)
# Example processing (identity here)
processed_red, processed_green, processed_blue = red, green, blue
# Merge channels back
merged = rearrange([processed_red, processed_green, processed_blue], 'rgb b c h w -> b (rgb c) h w')
2.2 展平和反展平
展平完全连接层的空间维度,然后反展平。
# Flatten spatial dimensions
flattened = rearrange(tensor, 'b c h w -> b (c h w)')
# Example neural network operation
# output = model(flattened)
# Unflatten back to spatial dimensions (assuming output has shape b, features)
# unflattened = rearrange(output, 'b (c h w) -> b c h w', c=3, h=32, w=32)
2.3 批量图像裁剪
批量裁剪图像中心。
# Assuming tensor is batch of images b, c, h, w
crop_size = 24
start = (32 - crop_size) // 2
cropped = rearrange(tensor, 'b c (h crop) (w crop) -> b c h w', crop=crop_size, h=start, w=start)
上面的操作从批次中的每个 32x32 图像中提取居中的 24x24 裁剪图像。
3、高级用例:实现注意力机制
注意力机制,尤其是自注意力(self attention),已成为现代深度学习架构(如 Transformers)的基石。让我们看看 Einops 如何简化自注意力机制的实现。
自注意力允许模型衡量输入数据不同部分的重要性。它是使用从输入数据中得出的查询 (Q)、键 (K) 和值 (V) 来计算的。
3.1 示例:简化的自注意力
为简单起见,我们将演示自注意力的基本版本。请注意,实际实现(如 Transformers 中的实现)包括掩码和缩放等其他步骤。
import torch
import torch.nn.functional as F
from einops import rearrange
def simplified_self_attention(q, k, v):
"""
A simplified self-attention mechanism.
Args:
q, k, v (torch.Tensor): Queries, Keys, and Values. Shape: [batch_size, num_tokens, feature_dim]
Returns:
torch.Tensor: The result of the attention mechanism.
"""
# Compute the dot product between queries and keys
scores = torch.matmul(q, k.transpose(-2, -1))
# Apply softmax to get probabilities
attn_weights = F.softmax(scores, dim=-1)
# Multiply by values
output = torch.matmul(attn_weights, v)
return output
# Example tensors representing queries, keys, and values
batch_size, num_tokens, feature_dim = 10, 16, 64
q = torch.rand(batch_size, num_tokens, feature_dim)
k = torch.rand(batch_size, num_tokens, feature_dim)
v = torch.rand(batch_size, num_tokens, feature_dim)
# Apply self-attention
attention_output = simplified_self_attention(q, k, v)
print("Output shape:", attention_output.shape)
在此示例中,为简单起见,使用 torch.matmul 来计算点积。Einops 在这些操作之前或之后重新排列张量时特别有用,可确保它们在矩阵乘法等操作中正确对齐。
3.2 进一步利用 Einops
除了基本的重排、规约和重复之外,Einops 还可用于更复杂的张量操作,这在多头注意力中经常遇到,其中将特征维度拆分为多个“头”可以简洁地表达:
def multi_head_self_attention(q, k, v, num_heads=8):
"""
Multi-head self-attention using Einops for splitting and merging heads.
"""
batch_size, num_tokens, feature_dim = q.shape
head_dim = feature_dim // num_heads
# Split into multiple heads
q, k, v = [
rearrange(x, 'b t (h d) -> b h t d', h=num_heads)
for x in (q, k, v)
]
# Apply self-attention to each head
output = simplified_self_attention(q, k, v)
# Merge the heads back
output = rearrange(output, 'b h t d -> b t (h d)')
return output
# Apply multi-head self-attention
multi_head_attention_output = multi_head_self_attention(q, k, v)
print("Multi-head output shape:", multi_head_attention_output.shape)
此示例展示了 Einops 在轻松处理复杂张量重塑任务方面的强大功能,使您的代码更具可读性和可维护性。
4、结束语
Einops 是一种多功能且功能强大的张量操作工具,可以显著简化深度学习模型中复杂操作的实现。通过掌握 Einops,你将能够编写更简洁、可读和高效的张量操作代码,从而提升你的深度学习项目。无论是实现复杂的神经网络架构(如 Transformers)还是执行基本的张量重塑任务,Einops 都能满足你的需求。
相关推荐
- 再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)
-
在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...
- python创建分类器小结(pytorch分类数据集创建)
-
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...
- matplotlib——绘制散点图(matplotlib散点图颜色和图例)
-
绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...
- python实现实时绘制数据(python如何绘制)
-
方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...
- 简单学Python——matplotlib库3——绘制散点图
-
前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...
- 数据分析-相关性分析可视化(相关性分析数据处理)
-
前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...
- 免费Python机器学习课程一:线性回归算法
-
学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...
- 用Python进行机器学习(2)之逻辑回归
-
前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...
- 【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂
-
一、拟合和回归的区别拟合...
- 推荐2个十分好用的pandas数据探索分析神器
-
作者:俊欣来源:关于数据分析与可视化...
- 向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- 用Python进行机器学习(11)-主成分分析PCA
-
我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...
- 神经网络基础深度解析:从感知机到反向传播
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- Python实现基于机器学习的RFM模型
-
CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)