C,Java和Python之间的性能比较
ztj100 2025-05-23 21:35 16 浏览 0 评论
这是我用所有三种语言运行矩阵乘法时发生的情况
在过去的两年中,我为C语言做了大量的实现工作。 我之所以选择C语言而不是其他语言,是因为人们普遍认为C代码比其他流行的编程语言(例如Java和Python)运行得更快。 但是,即使我一直对C的速度(或C实际上最快)感到好奇,我自己也没有做任何实验来证实这一说法。 最后,我决定进行一些实验,以比较C,Java和Python的性能。 本文是关于我进行的实验和获得的结果的文章。
本实验
我决定使用所有三种语言进行矩阵乘法。 矩阵的大小为2048 x 2048(即每个矩阵的乘法和加法运算为8,589,934,592),我为它们填充了0.0到1.0之间的随机值(使用随机值而不是对所有三种语言使用完全相同的矩阵的影响可以忽略不计)。 我将每个实验运行了五次,并计算了平均运行时间。
C代码
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#define n 2048
double A[n][n];
double B[n][n];
double C[n][n];
int main() {
//populate the matrices with random values between 0.0 and 1.0
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = (double) rand() / (double) RAND_MAX;
B[i][j] = (double) rand() / (double) RAND_MAX;
C[i][j] = 0;
}
}
struct timespec start, end;
double time_spent;
//matrix multiplication
clock_gettime(CLOCK_REALTIME, &start);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
clock_gettime(CLOCK_REALTIME, &end);
time_spent = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) / 1000000000.0;
printf("Elapsed time in seconds: %f \n", time_spent);
return 0;
}
Java代码
import java.util.Random;
public class MatrixMultiplication {
static int n = 2048;
static double[][] A = new double[n][n];
static double[][] B = new double[n][n];
static double[][] C = new double[n][n];
public static void main(String[] args) {
//populate the matrices with random values between 0.0 and 1.0
Random r = new Random();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = r.nextDouble();
B[i][j] = r.nextDouble();
C[i][j] = 0;
}
}
long start = System.nanoTime();
//matrix multiplication
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
long stop = System.nanoTime();
double timeDiff = (stop - start) * 1e-9;
System.out.println("Elapsed time in seconds: " + timeDiff);
}
}
Python代码
import random
import time
n = 2048
#populate the matrices with random values between 0.0 and 1.0
A = [[random.random() for row in range(n)] for col in range(n)]
B = [[random.random() for row in range(n)] for col in range(n)]
C = [[0 for row in range(n)] for col in range(n)]
start = time.time()
#matrix multiplication
for i in range(n):
for j in range(n):
for k in range(n):
C[i][j] += A[i][k] * B[k][j]
end = time.time()
print("Elapsed time in seconds %0.6f" % (end-start))
如何编译和运行
#C
gcc MatrixMultiplication.c -o matrix
./matrix
#Java
javac MatrixMultiplication.java
java MatrixMultiplication
#Python
python MatrixMultiplication.py
运行时间
根据这些结果,C比Java慢2.34倍,Python比Java慢33.34倍。
等待!!! C应该不是最快的吗???
实际上,这是不公平的比较。 当我们编译Java程序时,即使没有任何优化标志,Java JIT(即时)编译器也会自动执行优化。 但是,对于GCC(编译C程序),情况并非如此,我们必须显式设置优化标志。
因此,我在编译C程序时使用了-O2和-O3优化标志,并再次进行了实验。
gcc -O2 MatrixMultiplication.c -o matrix./matrixgcc -O3 MatrixMultiplication.c -o matrix./matrix
新的经过时间
现在,Java代码比C [-O3]慢1.69倍,而Python代码慢56倍。 我做出了正确的决定(或者很幸运:-)),选择了C而不是其他编程语言。
总结结果
讨论结果
· Python相对非常慢,因为C是经过编译的,而Python是被解释的。 编译器一次将C代码转换为机器代码。 另一方面,解释器必须读取,解释和执行每一行代码,并更新机器状态(这会增加很多开销)。 将程序编译为机器代码时,CPU可以直接执行它。 但是,当涉及到解释器时,CPU将运行解释器,并且解释器本身将执行程序。 (如果您对编译器和解释器感兴趣,请阅读Vaidehi Joshi撰写的精彩文章)
· 这就是使Python非常灵活的原因。 Python牺牲了一点性能来提供更多的灵活性/高级编程功能(如果不使用C语言指定数据类型,则不能将变量初始化为n = 100,但是可以在Python中进行初始化)。
· JIT(Java编译器)位于C和Python之间。 首次执行代码时,将对其进行解释。 但是,当一段代码频繁执行时,它会实时编译为机器代码,并且进一步的执行将使用编译后的版本。
本文的灵感来自Charles E. Leiserson教授关于性能工程的演讲,我修改了他使用的源代码以满足我的要求。
我用来运行实验的机器的配置[处理器:Intel(R)Core(TM)i7–5500U CPU @ 2.40GHz,RAM:12Gb DDR3,OS:Ubuntu 18.04.4]
(本文翻译自Gunavaran Brihadiswaran的文章《A Performance Comparison Between C, Java, and Python》,参考:
https://medium.com/swlh/a-performance-comparison-between-c-java-and-python-df3890545f6d)
相关推荐
- 拒绝躺平,如何使用AOP的环绕通知实现分布式锁
-
如何在分布式环境下,像用synchronized关键字那样使用分布式锁。比如开发一个注解,叫@DistributionLock,作用于一个方法函数上,每次调方法前加锁,调完之后自动释放锁。可以利用Sp...
- 「解锁新姿势」 兄dei,你代码需要优化了
-
前言在我们平常开发过程中,由于项目时间紧张,代码可以用就好,往往会忽视代码的质量问题。甚至有些复制粘贴过来,不加以整理规范。往往导致项目后期难以维护,更别说后续接手项目的人。所以啊,我们要编写出优雅的...
- 消息队列核心面试点讲解(消息队列面试题)
-
Rocketmq消息不丢失一、前言RocketMQ可以理解成一个特殊的存储系统,这个存储系统特殊之处数据是一般只会被使用一次,这种情况下,如何保证这个被消费一次的消息不丢失是非常重要的。本文将分析Ro...
- 秒杀系统—4.第二版升级优化的技术文档二
-
大纲7.秒杀系统的秒杀活动服务实现...
- SpringBoot JPA动态查询与Specification详解:从基础到高级实战
-
一、JPA动态查询概述1.1什么是动态查询动态查询是指根据运行时条件构建的查询,与静态查询(如@Query注解或命名查询)相对。在业务系统中,80%的查询需求都是动态的,例如电商系统中的商品筛选、订...
- Java常用工具类技术文档(java常用工具类技术文档有哪些)
-
一、概述Java工具类(UtilityClasses)是封装了通用功能的静态方法集合,能够简化代码、提高开发效率。本文整理Java原生及常用第三方库(如ApacheCommons、GoogleG...
- Guava 之Joiner 拼接字符串和Map(字符串拼接join的用法)
-
Guave是一个强大的的工具集合,今天给大家介绍一下,常用的拼接字符串的方法,当然JDK也有方便的拼接字符串的方式,本文主要介绍guava的,可以对比使用基本的拼接的话可以如下操作...
- SpringBoot怎么整合Redis,监听Key过期事件?
-
一、修改Redis配置文件1、在Redis的安装目录2、找到redis.windows.conf文件,搜索“notify-keyspace-events”...
- 如何使用Python将多个excel文件数据快速汇总?
-
在数据分析和处理的过程中,Excel文件是我们经常会遇到的数据格式之一。本文将通过一个具体的示例,展示如何使用Python和Pandas库来读取、合并和处理多个Excel文件的数据,并最终生成一个包含...
- 利用Pandas高效处理百万级数据集,速度提升10倍的秘密武器
-
处理大规模数据集,尤其是百万级别的数据量,对效率的要求非常高。使用Pandas时,可以通过一些策略和技巧显著提高数据处理的速度。以下是一些关键的方法,帮助你使用Pandas高效地处理大型数据集,从而实...
- Python进阶-Day 25: 数据分析基础
-
目标:掌握Pandas和NumPy的基本操作,学习如何分析CSV数据集并生成报告。课程内容...
- Pandas 入门教程 - 第五课: 高级数据操作
-
在前几节课中,我们学习了如何使用Pandas进行数据操作和可视化。在这一课中,我们将进一步探索一些高级的数据操作技巧,包括数据透视、分组聚合、时间序列处理以及高级索引和切片。高级索引和切片...
- 原来这才是Pandas!(原来这才是薯片真正的吃法)
-
听到一些人说,Pandas语法太乱、太杂了,根本记不住。...
- python(pandas + numpy)数据分析的基础
-
数据NaN值排查,统计,排序...
- 利用Python进行数据分组/数据透视表
-
1.数据分组源数据表如下所示:1.1分组键是列名分组键是列名时直接将某一列或多列的列名传给groupby()方法,groupby()方法就会按照这一列或多列进行分组。按照一列进行分组...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)