什么是注意力机制?注意力机制的计算规则
ztj100 2024-11-03 16:15 13 浏览 0 评论
我们观察事物时,之所以能够快速判断一种事物(当然允许判断是错误的),是因为我们大脑能够很快把注意力放在事物最具有辨识度的部分从而作出判断,而并非是从头到尾的观察一遍事物后,才能有判断结果,正是基于这样的理论,就产生了注意力机制。
什么是注意力计算规则:
它需要三个指定的输入Q(query),K(key),V(value),然后通过计算公式得到注意力的结果,这个结果代表query在key和value作用下的注意力表示.当输入的Q=K=V时,称作自注意力计算规则。
常见的注意力计算规则:
|| ·将Q,K进行纵轴拼接,做一次线性变化,再使用softmax处理获得结果最后与V做张量乘法。
|| ·将Q,K进行纵轴拼接,做一次线性变化后再使用tanh函数激活,然后再进行内部求和,最后使用softmax处理获得结果再与V做张量乘法.
|| ·将Q与K的转置做点积运算,然后除以一个缩放系数再使用softmax处理获得结果最后与V做张量乘法。
说明:当注意力权重矩阵和V都是三维张量且第一维代表为batch条数时, 则做bmm运算.bmm是一种特殊的张量乘法运算。
bmm运算演示:
# 如果参数1形状是(b × n × m), 参数2形状是(b × m × p), 则输出为(b × n × p)
>>> input = torch.randn(10, 3, 4)
>>> mat2 = torch.randn(10, 4, 5)
>>> res = torch.bmm(input, mat2)
>>> res.size()
torch.Size([10, 3, 5])
注意力机制的作用
在解码器端的注意力机制:能够根据模型目标有效的聚焦编码器的输出结果,当其作为解码器的输入时提升效果,改善以往编码器输出是单一定长张量,无法存储过多信息的情况。
在编码器端的注意力机制:主要解决表征问题,相当于特征提取过程,得到输入的注意力表示。般使用自注意力(self-attention)。
注意力机制实现步骤
第一步:根据注意力计算规则,对Q,K,V进行相应的计算
第二步:根据第一步采用的计算方法,如果是拼接方法,则需要将Q与第二步的计算结果再进行拼接,如果是转置点积一般是自注意力,Q与V相同,则不需要进行与Q的拼接
第三步:最后为了使整个attention机制按照指定尺寸输出,使用线性层作用在第二步的结果上做个线性变换,得到最终对Q的注意力表示
常见注意力机制的代码分析:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Attn(nn.Module):
def __init__(self, query_size, key_size, value_size1, value_size2, output_size):
"""初始化函数中的参数有5个, query_size代表query的最后一维大小
key_size代表key的最后一维大小, value_size1代表value的导数第二维大小,
value = (1, value_size1, value_size2)
value_size2代表value的倒数第一维大小, output_size输出的最后一维大小"""
super(Attn, self).__init__()
# 将以下参数传入类中
self.query_size = query_size
self.key_size = key_size
self.value_size1 = value_size1
self.value_size2 = value_size2
self.output_size = output_size
# 初始化注意力机制实现第一步中需要的线性层.
self.attn = nn.Linear(self.query_size + self.key_size, value_size1)
# 初始化注意力机制实现第三步中需要的线性层.
self.attn_combine = nn.Linear(self.query_size + value_size2, output_size)
def forward(self, Q, K, V):
"""forward函数的输入参数有三个, 分别是Q, K, V, 根据模型训练常识, 输入给Attion机制的
张量一般情况都是三维张量, 因此这里也假设Q, K, V都是三维张量"""
# 第一步, 按照计算规则进行计算,
# 我们采用常见的第一种计算规则
# 将Q,K进行纵轴拼接, 做一次线性变化, 最后使用softmax处理获得结果
attn_weights = F.softmax(
self.attn(torch.cat((Q[0], K[0]), 1)), dim=1)
# 然后进行第一步的后半部分, 将得到的权重矩阵与V做矩阵乘法计算,
# 当二者都是三维张量且第一维代表为batch条数时, 则做bmm运算
attn_applied = torch.bmm(attn_weights.unsqueeze(0), V)
# 之后进行第二步, 通过取[0]是用来降维, 根据第一步采用的计算方法,
# 需要将Q与第一步的计算结果再进行拼接
output = torch.cat((Q[0], attn_applied[0]), 1)
# 最后是第三步, 使用线性层作用在第三步的结果上做一个线性变换并扩展维度,得到输出
# 因为要保证输出也是三维张量, 因此使用unsqueeze(0)扩展维度
output = self.attn_combine(output).unsqueeze(0)
return output, attn_weights
调用:
query_size = 32
key_size = 32
value_size1 = 32
value_size2 = 64
output_size = 64
attn = Attn(query_size, key_size, value_size1, value_size2, output_size)
Q = torch.randn(1,1,32)
K = torch.randn(1,1,32)
V = torch.randn(1,32,64)
out = attn(Q, K ,V)
print(out[0])
print(out[1])
输出效果:
tensor([[[ 0.4477, -0.0500, -0.2277, -0.3168, -8.4096, -0.5982, 0.1548,
-8.8771, -8.0951. 8.1833. 8.3128. 8.1260, 8.4420. 8.8495.
-0.7774, -0.0995, 0.2629, 0.4957, 1.0922, 0.1428, 0.3024.
-0.2646, -0.0265, 0.0632, 0.3951, 0.1583, 0.1130, 0.5500,
-0.1887, -0.2816, -0.3800, -0.5741, 0.1342, 0.0244, -0.2217,
0.1544, 0.1865, -0.2019, 0.4090, -0.4762, 0.3677, -0.2553,
-0.5199, 0.2290, -0.4407, 0.0663, -8.0182, -8.2168, 0.0913,
-0.2340, 0.1924, -0.3687, 0.1508, 0.3618, -0.0113, 0.2864.
-0.1929, -0.6821, 0.0951, 0.1335, 0.3560, -0.3215
,0.6461,
0.1532]]],grad_fn=<UnsqueezeBackward0>)
tensor([[0.0395, 0.0342, 0.0200, 0.0471, 0.0177, 0.0209, 0.0244, 0.0465, 0.0346,
0.0378, 0.0282, 0.0214, 0.0135, 0.0419, 0.0926, 0.0123, 0.0177, 0.0187,
0.0166, 0.8225, 0.0234, 0.0284, 0.0151, 0.0239, 0.0132, 0.0439, 0.0507,
0.0419, 8.0352, 8.0392, 8.0546, 0.0224]], grad_fn=<SoftmaxBackward>)
相关推荐
- Vue 技术栈(全家桶)(vue technology)
-
Vue技术栈(全家桶)尚硅谷前端研究院第1章:Vue核心Vue简介官网英文官网:https://vuejs.org/中文官网:https://cn.vuejs.org/...
- vue 基础- nextTick 的使用场景(vue的nexttick这个方法有什么用)
-
前言《vue基础》系列是再次回炉vue记的笔记,除了官网那部分知识点外,还会加入自己的一些理解。(里面会有部分和官网相同的文案,有经验的同学择感兴趣的阅读)在开发时,是不是遇到过这样的场景,响应...
- vue3 组件初始化流程(vue组件初始化顺序)
-
学习完成响应式系统后,咋们来看看vue3组件的初始化流程既然是看vue组件的初始化流程,咋们先来创建基本的代码,跑跑流程(在app.vue中写入以下内容,来跑流程)...
- vue3优雅的设置element-plus的table自动滚动到底部
-
场景我是需要在table最后添加一行数据,然后把滚动条滚动到最后。查网上的解决方案都是读取html结构,暴力的去获取,虽能解决问题,但是不喜欢这种打补丁的解决方案,我想着官方应该有相关的定义,于是就去...
- Vue3为什么推荐使用ref而不是reactive
-
为什么推荐使用ref而不是reactivereactive本身具有很大局限性导致使用过程需要额外注意,如果忽视这些问题将对开发造成不小的麻烦;ref更像是vue2时代optionapi的data的替...
- 9、echarts 在 vue 中怎么引用?(必会)
-
首先我们初始化一个vue项目,执行vueinitwebpackechart,接着我们进入初始化的项目下。安装echarts,npminstallecharts-S//或...
- 无所不能,将 Vue 渲染到嵌入式液晶屏
-
该文章转载自公众号@前端时刻,https://mp.weixin.qq.com/s/WDHW36zhfNFVFVv4jO2vrA前言...
- vue-element-admin 增删改查(五)(vue-element-admin怎么用)
-
此篇幅比较长,涉及到的小知识点也比较多,一定要耐心看完,记住学东西没有耐心可不行!!!一、添加和修改注:添加和编辑用到了同一个组件,也就是此篇文章你能学会如何封装组件及引用组件;第二能学会async和...
- 最全的 Vue 面试题+详解答案(vue面试题知识点大全)
-
前言本文整理了...
- 基于 vue3.0 桌面端朋友圈/登录验证+60s倒计时
-
今天给大家分享的是Vue3聊天实例中的朋友圈的实现及登录验证和倒计时操作。先上效果图这个是最新开发的vue3.x网页端聊天项目中的朋友圈模块。用到了ElementPlus...
- 不来看看这些 VUE 的生命周期钩子函数?| 原力计划
-
作者|huangfuyk责编|王晓曼出品|CSDN博客VUE的生命周期钩子函数:就是指在一个组件从创建到销毁的过程自动执行的函数,包含组件的变化。可以分为:创建、挂载、更新、销毁四个模块...
- Vue3.5正式上线,父传子props用法更丝滑简洁
-
前言Vue3.5在2024-09-03正式上线,目前在Vue官网显最新版本已经是Vue3.5,其中主要包含了几个小改动,我留意到日常最常用的改动就是props了,肯定是用Vue3的人必用的,所以针对性...
- Vue 3 生命周期完整指南(vue生命周期及使用)
-
Vue2和Vue3中的生命周期钩子的工作方式非常相似,我们仍然可以访问相同的钩子,也希望将它们能用于相同的场景。...
- 救命!这 10 个 Vue3 技巧藏太深了!性能翻倍 + 摸鱼神器全揭秘
-
前端打工人集合!是不是经常遇到这些崩溃瞬间:Vue3项目越写越卡,组件通信像走迷宫,复杂逻辑写得脑壳疼?别慌!作为在一线摸爬滚打多年的老前端,今天直接甩出10个超实用的Vue3实战技巧,手把...
- 怎么在 vue 中使用 form 清除校验状态?
-
在Vue中使用表单验证时,经常需要清除表单的校验状态。下面我将介绍一些方法来清除表单的校验状态。1.使用this.$refs...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Vue 技术栈(全家桶)(vue technology)
- vue 基础- nextTick 的使用场景(vue的nexttick这个方法有什么用)
- vue3 组件初始化流程(vue组件初始化顺序)
- vue3优雅的设置element-plus的table自动滚动到底部
- Vue3为什么推荐使用ref而不是reactive
- 9、echarts 在 vue 中怎么引用?(必会)
- 无所不能,将 Vue 渲染到嵌入式液晶屏
- vue-element-admin 增删改查(五)(vue-element-admin怎么用)
- 最全的 Vue 面试题+详解答案(vue面试题知识点大全)
- 基于 vue3.0 桌面端朋友圈/登录验证+60s倒计时
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)