百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

深度学习-Pytorch框架学习之张量处理篇

ztj100 2024-11-03 16:15 27 浏览 0 评论



1. 数据类型

根据官方文档显示,张量定义为包含单一数据类型元素的多维矩阵

在Pytorch中,有9种CPU张量类型和9种GPU张量类型。具体类型如下图所示:

在Pytorch中,可以通过Python 列表和torch.tensor()构造函数构造一个张量。

>>> torch.tensor([[1., -1.], [1., -1.]])
tensor([[ 1.0000, -1.0000],
        [ 1.0000, -1.0000]])
>>> torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
tensor([[ 1,  2,  3],
        [ 4,  5,  6]])

2. 张量的基本信息

tensor = torch.randn(2,3,4)
print(tensor.type())  # 数据类型  torch.FloatTensor,是一个浮点型的张量
print(tensor.size())   # 张量的shape,是个元组 torch.Size([2, 3, 4])
print(tensor.dim())   # 维度的数量 3

3. 张量的命名

程序中,一个好的命名可以便于其他人读懂代码,张量的命名也是如此。这样可以方便地使用维度的名字来做索引或其他操作,提高了可读性、易用性,防止程序出错,便于其他人阅读和修改。

# 在PyTorch 1.3之前,需要使用注释
# Tensor[N, C, H, W]
images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)

# PyTorch 1.3之后
NCHW = [‘N’, ‘C’, ‘H’, ‘W’]
images = torch.randn(32, 3, 56, 56, names=NCHW)
images.sum('C')
images.select('C', index=0)
# 也可以这么设置
tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))
# 使用align_to可以对维度方便地排序
tensor = tensor.align_to('N', 'C', 'H', 'W')

4.张量数据类型转换

在Pytorch中,FloatTensor处理速度远远快于DoubleTensor,因此默认采用FloatTensor,也可以通过转换变成其他类型的数据。

# 设置默认类型
torch.set_default_tensor_type(torch.FloatTensor)

# 类型转换
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()

torch.Tensor与np.ndarray转换

除了CharTensor类型外,其他所有CPU上的张量都支持转换为numpy格式,当然也可以再转换回来。

ndarray = tensor.cpu().numpy()
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.

torch.tensor与PIL.Image转换

在Pytorch中,张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],有时候处理数据时需要进行转置和规范化。

# torch.Tensor -> PIL.Image
image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way

# PIL.Image -> torch.Tensor
path = r'./figure.jpg'
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way

5.张量的常用操作

矩阵乘法

# Matrix multiplcation: (m*n) * (n*p) * -> (m*p).
result = torch.mm(tensor1, tensor2)

# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)
result = torch.bmm(tensor1, tensor2)

# Element-wise multiplication.
result = tensor1 * tensor2

计算两组数据之间的两两欧式距离

dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))

张量形变

将卷积层输入全连接层的情况时,通常需要对张量做形变处理如.view()和.reshape()等,但是相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。

tensor = torch.rand(2,3,4)
shape = (6, 4)
tensor = torch.reshape(tensor, shape)

打乱顺序

tensor = tensor[torch.randperm(tensor.size(0))]  # 打乱第一个维度

水平翻转

Pytorch不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现。

# 假设张量的维度为[N, D, H, W].
tensor = tensor[:, :, :, torch.arange(tensor.size(3) - 1, -1, -1).long()]

复制张量

# Operation                 |  New/Shared memory | Still in computation graph |
tensor.clone()            # |        New         |          Yes               |
tensor.detach()           # |      Shared        |          No                |
tensor.detach.clone()   # |        New         |          No                |

张量拼接

torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,而torch.stack会新增一维。当参数是3个10x5的张量,torch.cat的结果是30x5的张量,而torch.stack的结果是3x10x5的张量。

tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)

将整数标签转为one-hot编码

Pytorch的标记默认从0开始,转换为one-hot编码在数据处理时也经常用到。

tensor = torch.tensor([0, 2, 1, 3])
N = tensor.size(0)
num_classes = 4
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())

得到非零元素

torch.nonzero(tensor)               # index of non-zero elements,索引非零元素
torch.nonzero(tensor==0)            # index of zero elements,索引零元素
torch.nonzero(tensor).size(0)       # number of non-zero elements,非零元素的个数
torch.nonzero(tensor == 0).size(0)  # number of zero elements,零元素的个数

判断两个张量相等

torch.allclose(tensor1, tensor2)  # float tensor
torch.equal(tensor1, tensor2)     # int tensor

张量扩展

将64*512的张量扩展为64*512*7*7的张量

tensor = torch.rand(64,512)
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)


未完待续...

如有遗漏或在错误的地方,希望大家指出;如果还有大家认为很重要的张量操作,也麻烦大家指出,互相进步,不甚感激!

相关推荐

sharding-jdbc实现`分库分表`与`读写分离`

一、前言本文将基于以下环境整合...

三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么

在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...

MySQL8行级锁_mysql如何加行级锁

MySQL8行级锁版本:8.0.34基本概念...

mysql使用小技巧_mysql使用入门

1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...

MySQL/MariaDB中如何支持全部的Unicode?

永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...

聊聊 MySQL Server 可执行注释,你懂了吗?

前言MySQLServer当前支持如下3种注释风格:...

MySQL系列-源码编译安装(v5.7.34)

一、系统环境要求...

MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了

对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...

MySQL字符问题_mysql中字符串的位置

中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...

深圳尚学堂:mysql基本sql语句大全(三)

数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...

MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?

大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...

一文讲清怎么利用Python Django实现Excel数据表的导入导出功能

摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...

用DataX实现两个MySQL实例间的数据同步

DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...

MySQL数据库知识_mysql数据库基础知识

MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...

如何为MySQL中的JSON字段设置索引

背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...

取消回复欢迎 发表评论: