深度学习-Pytorch框架学习之张量处理篇
ztj100 2024-11-03 16:15 27 浏览 0 评论
1. 数据类型
根据官方文档显示,张量定义为包含单一数据类型元素的多维矩阵。
在Pytorch中,有9种CPU张量类型和9种GPU张量类型。具体类型如下图所示:
在Pytorch中,可以通过Python 列表和torch.tensor()构造函数构造一个张量。
>>> torch.tensor([[1., -1.], [1., -1.]])
tensor([[ 1.0000, -1.0000],
[ 1.0000, -1.0000]])
>>> torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
tensor([[ 1, 2, 3],
[ 4, 5, 6]])2. 张量的基本信息
tensor = torch.randn(2,3,4)
print(tensor.type()) # 数据类型 torch.FloatTensor,是一个浮点型的张量
print(tensor.size()) # 张量的shape,是个元组 torch.Size([2, 3, 4])
print(tensor.dim()) # 维度的数量 33. 张量的命名
程序中,一个好的命名可以便于其他人读懂代码,张量的命名也是如此。这样可以方便地使用维度的名字来做索引或其他操作,提高了可读性、易用性,防止程序出错,便于其他人阅读和修改。
# 在PyTorch 1.3之前,需要使用注释
# Tensor[N, C, H, W]
images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)
# PyTorch 1.3之后
NCHW = [‘N’, ‘C’, ‘H’, ‘W’]
images = torch.randn(32, 3, 56, 56, names=NCHW)
images.sum('C')
images.select('C', index=0)
# 也可以这么设置
tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))
# 使用align_to可以对维度方便地排序
tensor = tensor.align_to('N', 'C', 'H', 'W')4.张量数据类型转换
在Pytorch中,FloatTensor处理速度远远快于DoubleTensor,因此默认采用FloatTensor,也可以通过转换变成其他类型的数据。
# 设置默认类型
torch.set_default_tensor_type(torch.FloatTensor)
# 类型转换
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()torch.Tensor与np.ndarray转换
除了CharTensor类型外,其他所有CPU上的张量都支持转换为numpy格式,当然也可以再转换回来。
ndarray = tensor.cpu().numpy()
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.torch.tensor与PIL.Image转换
在Pytorch中,张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],有时候处理数据时需要进行转置和规范化。
# torch.Tensor -> PIL.Image
image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way
# PIL.Image -> torch.Tensor
path = r'./figure.jpg'
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way5.张量的常用操作
矩阵乘法
# Matrix multiplcation: (m*n) * (n*p) * -> (m*p).
result = torch.mm(tensor1, tensor2)
# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)
result = torch.bmm(tensor1, tensor2)
# Element-wise multiplication.
result = tensor1 * tensor2计算两组数据之间的两两欧式距离
dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))张量形变
将卷积层输入全连接层的情况时,通常需要对张量做形变处理如.view()和.reshape()等,但是相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。
tensor = torch.rand(2,3,4)
shape = (6, 4)
tensor = torch.reshape(tensor, shape)打乱顺序
tensor = tensor[torch.randperm(tensor.size(0))] # 打乱第一个维度水平翻转
Pytorch不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现。
# 假设张量的维度为[N, D, H, W].
tensor = tensor[:, :, :, torch.arange(tensor.size(3) - 1, -1, -1).long()]复制张量
# Operation | New/Shared memory | Still in computation graph |
tensor.clone() # | New | Yes |
tensor.detach() # | Shared | No |
tensor.detach.clone() # | New | No |张量拼接
torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,而torch.stack会新增一维。当参数是3个10x5的张量,torch.cat的结果是30x5的张量,而torch.stack的结果是3x10x5的张量。
tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)将整数标签转为one-hot编码
Pytorch的标记默认从0开始,转换为one-hot编码在数据处理时也经常用到。
tensor = torch.tensor([0, 2, 1, 3])
N = tensor.size(0)
num_classes = 4
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())得到非零元素
torch.nonzero(tensor) # index of non-zero elements,索引非零元素
torch.nonzero(tensor==0) # index of zero elements,索引零元素
torch.nonzero(tensor).size(0) # number of non-zero elements,非零元素的个数
torch.nonzero(tensor == 0).size(0) # number of zero elements,零元素的个数判断两个张量相等
torch.allclose(tensor1, tensor2) # float tensor
torch.equal(tensor1, tensor2) # int tensor张量扩展
将64*512的张量扩展为64*512*7*7的张量
tensor = torch.rand(64,512)
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)未完待续...
如有遗漏或在错误的地方,希望大家指出;如果还有大家认为很重要的张量操作,也麻烦大家指出,互相进步,不甚感激!
相关推荐
- sharding-jdbc实现`分库分表`与`读写分离`
-
一、前言本文将基于以下环境整合...
- 三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么
-
在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...
- MySQL8行级锁_mysql如何加行级锁
-
MySQL8行级锁版本:8.0.34基本概念...
- mysql使用小技巧_mysql使用入门
-
1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...
- MySQL/MariaDB中如何支持全部的Unicode?
-
永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...
- 聊聊 MySQL Server 可执行注释,你懂了吗?
-
前言MySQLServer当前支持如下3种注释风格:...
- MySQL系列-源码编译安装(v5.7.34)
-
一、系统环境要求...
- MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了
-
对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...
- MySQL字符问题_mysql中字符串的位置
-
中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...
- 深圳尚学堂:mysql基本sql语句大全(三)
-
数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...
- MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?
-
大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...
- 一文讲清怎么利用Python Django实现Excel数据表的导入导出功能
-
摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...
- 用DataX实现两个MySQL实例间的数据同步
-
DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...
- MySQL数据库知识_mysql数据库基础知识
-
MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...
- 如何为MySQL中的JSON字段设置索引
-
背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...
欢迎 你 发表评论:
- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
【VueTorrent】一款吊炸天的qBittorrent主题,人人都可用
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)
