python+selenium+pytesseract识别图片验证码
ztj100 2025-05-11 03:07 18 浏览 0 评论
一、selenium截取验证码
# 私信小编01即可获取大量Python学习资源
# 私信小编01即可获取大量Python学习资源
# 私信小编01即可获取大量Python学习资源
import json
from io import BytesIO
import time
from test.testBefore.testDriver import driver
from test.util.test_pytesseract import recognize
from PIL import Image
import allure
import unittest
'''
/处理验证码
'''
# 要截图的元素
element = driver.find_element_by_xpath('//*[@id="imgVerifyCode"]')
# 坐标
x, y = element.location.values()
# 宽高
h, w = element.size.values()
# 把截图以二进制形式的数据返回
image_data = driver.get_screenshot_as_png()
# 以新图片打开返回的数据
screenshot = Image.open(BytesIO(image_data))
# 对截图进行裁剪
result = screenshot.crop((x, y, x + w, y + h))
# 显示图片
# result.show()
# 保存验证码图片
result.save('VerifyCode.png')
# 调用recognize方法识别验证码
code = recognize('VerifyCode.png')
# 输入验证码
driver.find_element_by_xpath('//*[@id="txtcode"]').send_keys(code)
'''
处理验证码/
'''
- 注意:driver是引用我自己写的文件,可以自己随便写一个。识别图片的代码单独放在util文件夹下面的,参考标题三的代码,需要时引用。以上代码定位元素都需要根据自己的项目定位元素修改。
二、安装识别环境pytesseract+Tesseract-OCR
- 如果没有输出,又不确定你的pytesseract环境是否安装好,可以用一张没有干扰的图片识别看看能不能有输出结果,以下样例在我的环境中可以直接输出识别结果8fnp
验证识别环境是否正常
- 直接使用pytesseract识别图片
- 001.png
text = pytesseract.image_to_string('./001.png')
print(text)
三、处理验证码图片
直接截图的验证码图片存在噪点或者干扰线等,直接使用pytesseract识别可能会没有输出结果,如果环境正常,但没有输出结果,那多半是因为图片没有处理好,识别不出来,可以多尝试一些处理图片的方式,以下代码处理我截图这种类似的图片效果比较好。
图片处理识别
对图片处理的过程:
图片处理过程中可以多用im.show()看看每一步处理后的图片是不是符合预期,如果效果不好调一下参数。另外在学习过程中发现有童鞋说识别不出来把图片使用cv2.resize()这个方法放大就能识别,可以参考Python中图像的缩放 resize()函数的应用
- 实际截取的图片
- 处理后的图片
- test_pytesseract.py
import pytesseract
from fnmatch import fnmatch
import cv2
import os
def clear_border(img, img_name):
'''
去除边框
'''
h, w = img.shape[:2]
for y in range(0, w):
for x in range(0, h):
# if y ==0 or y == w -1 or y == w - 2:
if y < 2 or y > w - 2:
img[x, y] = 255
# if x == 0 or x == h - 1 or x == h - 2:
if x < 1 or x > h - 1:
img[x, y] = 255
return img
def interference_line(img, img_name):
'''
干扰线降噪
'''
h, w = img.shape[:2]
# !!!opencv矩阵点是反的
# img[1,2] 1:图片的高度,2:图片的宽度
for r in range(0, 2):
for y in range(1, w - 1):
for x in range(1, h - 1):
count = 0
if img[x, y - 1] > 245:
count = count + 1
if img[x, y + 1] > 245:
count = count + 1
if img[x - 1, y] > 245:
count = count + 1
if img[x + 1, y] > 245:
count = count + 1
if count > 2:
img[x, y] = 255
return img
def interference_point(img, img_name, x=0, y=0):
"""点降噪
9邻域框,以当前点为中心的田字框,黑点个数
:param x:
:param y:
:return:
"""
# todo 判断图片的长宽度下限
cur_pixel = img[x, y] # 当前像素点的值
height, width = img.shape[:2]
for y in range(0, width - 1):
for x in range(0, height - 1):
if y == 0: # 第一行
if x == 0: # 左上顶点,4邻域
# 中心点旁边3个点
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # 右上顶点
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
else: # 最上非顶点,6邻域
sum = int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
elif y == width - 1: # 最下面一行
if x == 0: # 左下顶点
# 中心点旁边3个点
sum = int(cur_pixel) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x, y - 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1: # 右下顶点
sum = int(cur_pixel) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y - 1])
if sum <= 2 * 245:
img[x, y] = 0
else: # 最下非顶点,6邻域
sum = int(cur_pixel) \
+ int(img[x - 1, y]) \
+ int(img[x + 1, y]) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x + 1, y - 1])
if sum <= 3 * 245:
img[x, y] = 0
else: # y不在边界
if x == 0: # 左边非顶点
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
elif x == height - 1: # 右边非顶点
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
else: # 具备9领域条件的
sum = int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 4 * 245:
img[x, y] = 0
return img
def _get_dynamic_binary_image(filedir, img_name):
'''
自适应阀值二值化
'''
filename = './' + img_name.split('.')[0] + '-binary.png'
img_name = filedir + '/' + filename
im = cv2.imread(img_name)
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
return th1
def recognize(image):
filedir = './' # 验证码路径
for file in os.listdir(filedir):
if fnmatch(file, image):
img_name = file
# 自适应阈值二值化
im = _get_dynamic_binary_image(filedir, img_name)
# # 去除边框
im = clear_border(im, img_name)
# 对图片进行干扰线降噪
im = interference_line(im, img_name)
# 对图片进行点降噪
im = interference_point(im, img_name)
filename = './' + img_name.split('.')[0] + '-interferencePoint.png' # easy_code为保存路径
cv2.imwrite(filename, im) # 保存图片
text = pytesseract.image_to_string(im, lang="eng",
config='--psm 6 digits') # config=digits只识别数字
return text
'''
--psm 参数含义
0:定向脚本监测(OSD)
1: 使用OSD自动分页
2 :自动分页,但是不使用OSD或OCR(Optical Character Recognition,光学字符识别)
3 :全自动分页,但是没有使用OSD(默认)
4 :假设可变大小的一个文本列。
5 :假设垂直对齐文本的单个统一块。
6 :假设一个统一的文本块。
7 :将图像视为单个文本行。
8 :将图像视为单个词。
9 :将图像视为圆中的单个词。
10 :将图像视为单个字符。
'''
相关推荐
- Docker安全开放远程访问连接权限(docker 远程授权访问)
-
1、Docker完全开放远程访问Docker服务完全开放对外访问权限操作如下:#开启端口命令(--permanent永久生效,没有此参数重启后失效)firewall-cmd--zone=pu...
- SpringCloud系列——4OpenFeign简介及应用
-
学习目标什么是OpenFeign以及它的作用RPC到底怎么理解OpenFeign的应用第1章OpenFeign简介在前面的内容中,我们分析了基于RestTemplate实现http远程通信的方法。并...
- Spring Boot集成qwen:0.5b实现对话功能
-
1.什么是qwen:0.5b?模型介绍:Qwen1.5是阿里云推出的一系列大型语言模型。Qwen是阿里云推出的一系列基于Transformer的大型语言模型,在大量数据(包括网页文本、书籍、代码等)...
- JDK从8升级到21的问题集(jdk8升级到11)
-
一、背景与挑战1.升级动因oOracle长期支持策略o现代特性需求:协程、模式匹配、ZGC等o安全性与性能的需求oAI新技术引入的版本要求...
- 大白话详解Spring Cloud服务降级与熔断
-
1.Hystrix断路器概述1.1分布式系统面临的问题复杂分布式体系结构中的应用程序有数十个依赖关系,每个依赖关系在某些时候将不可避免地失败。这就造成有可能会发生...
- 面试突击43:lock、tryLock、lockInterruptibly有什么区别?
-
在Lock接口中,获取锁的方法有4个:lock()、tryLock()、tryLock(long,TimeUnit)、lockInterruptibly(),为什么需要这么多方法?这些方法都有...
- 了解网络编程 TCP/IP 协议与UDP 协议
-
因为iP地址比较难记忆,很多情况下可以使用域名代替iP地址。1.TCP/IP协议与UDP协议通过IP地址与端口号确定计算机在网络中的位置后,接下来考虑通讯的问题:因为不同计算机的软硬件平台...
- Semaphore与Exchanger的区别(semaphore和signal)
-
Semaphore和Exchanger是Java并发编程中两个常用的同步工具类,它们都可以用于协调多个线程之间的执行顺序和状态,但它们的作用和使用方式有所不同:Semaphore类表示一个...
- Java教程:什么是分布式任务调度?怎样实现任务调度?
-
通常任务调度的程序是集成在应用中的,比如:优惠卷服务中包括了定时发放优惠卷的的调度程序,结算服务中包括了定期生成报表的任务调度程序...
- java多线程—Runnable、Thread、Callable区别
-
多线程编程优点:进程之间不能共享内存,但线程之间共享内存非常容易。系统创建线程所分配的资源相对创建进程而言,代价非常小。Java中实现多线程有3种方法:继承Thread类实现Runnable...
- 工厂模式详解(工厂模式是啥意思)
-
工厂模式详解简单工厂简单工厂模式(SimpleFactoryPattern)是指由一个工厂对象决定创建出哪一种产品类的实例。简单工厂适用于工厂类负责创建的对象较少的场景,且客户端只需要传入工厂类的...
- 我们程序员眼中的母亲节(你眼中的程序员是什么样子的?程序员的薪酬如何?)
-
导语:对于我们成人来说,尤其是漂泊在外的程序员,陪伴父母的时间太少了。每逢佳节倍思亲,我们流浪外在的游子应该深有感触。母亲,是世界上最伟大的人,她承载着对我们的爱,更是负担和压力。我们作为子女,只会嫌...
- 死锁的 4 种排查工具(死锁检测方法要解决两个问题)
-
死锁(DeadLock)指的是两个或两个以上的运算单元(进程、线程或协程),都在等待对方停止执行,以取得系统资源,但是没有一方提前退出,就称为死锁。死锁示例接下来,我们先来演示一下Java中最简...
- 1. 工厂模式详解(工厂模式示例)
-
我们的项目代码也是由简而繁一步一步迭代而来的,但对于调用者来说却是越来越简单化。简单工厂模式简单工厂模式(SimpleFactoryPattern)是指由一个工厂对象决定创建出哪一种产品类的实例。...
- Jmeter(二十):jmeter对图片验证码的处理
-
jmeter对图片验证码的处理在web端的登录接口经常会有图片验证码的输入,而且每次登录时图片验证码都是随机的;当通过jmeter做接口登录的时候要对图片验证码进行识别出图片中的字段,然后再登录接口中...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Docker安全开放远程访问连接权限(docker 远程授权访问)
- SpringCloud系列——4OpenFeign简介及应用
- Spring Boot集成qwen:0.5b实现对话功能
- JDK从8升级到21的问题集(jdk8升级到11)
- 大白话详解Spring Cloud服务降级与熔断
- 面试突击43:lock、tryLock、lockInterruptibly有什么区别?
- 了解网络编程 TCP/IP 协议与UDP 协议
- Semaphore与Exchanger的区别(semaphore和signal)
- Java教程:什么是分布式任务调度?怎样实现任务调度?
- java多线程—Runnable、Thread、Callable区别
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)