百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

使用Python实现Hull Moving Average (HMA)

ztj100 2025-05-02 22:38 14 浏览 0 评论

赫尔移动平均线(Hull Moving Average,简称HMA)是一种技术指标,于2005年由Alan Hull开发。它是一种移动平均线,利用加权计算来减少滞后并提高准确性。

HMA对价格变动非常敏感,同时最大程度地减少短期波动可能产生的噪音。它通过使用加权计算来强调更近期的价格,同时平滑数据。

计算HMA的公式涉及三个步骤。首先,使用价格数据计算加权移动平均线。然后,使用第一步的结果计算第二个加权移动平均线。最后,使用第二步的结果计算第三个加权移动平均线。最终计算的结果就是移动赫尔平均线。

WMA_1 =一段时期内价格的加权移动平均值(WMA) /2

WMA_2 =价格在一段时间内的WMA

HMA_non_smooth = 2 * WMA_1 - WMA_2

HMA = HMA_non_smooth的WMA除以根号(周期)

在下面的文章中,我们将介绍如何使用Python实现HMA。本文将对计算WMA的两种方法进行详细比较。然后介绍它在时间序列建模中的作用。

Python实现HMA

方法1:将WMA计算为按时期加权的移动平均价格:

def hma(period):
wma_1 = df['Adj Close'].rolling(period//2).apply(lambda x: \
np.sum(x * np.arange(1, period//2+1)) / np.sum(np.arange(1, period//2+1)), raw=True)
wma_2 = df['Adj Close'].rolling(period).apply(lambda x: \
np.sum(x * np.arange(1, period+1)) / np.sum(np.arange(1, period+1)), raw=True)
diff = 2 * wma_1 - wma_2
hma = diff.rolling(int(np.sqrt(period))).mean()
return hma
period = 20
df['hma'] = hma(period)
df['sma_20days'] = df['Adj Close'].rolling(period).mean()
figsize = (10,6)
df[['Adj Close','hma','sma_20days']].plot(figsize=figsize)
plt.title('Hull Moving Average {0} days'.format(period))
plt.show()

如图所示,HMA比通常的SMA反应更快:

还可以尝试更短的时间框架,看看HMA与价格曲线的关系有多密切。

df['hma_short']=hma(14)
df['hma_long']=hma(30)
figsize = (12,6)
df[['Adj Close','hma_short','hma_long']].plot(figsize=figsize)
plt.title('Hull Moving Average')
plt.show()

方法2,使用体量计算加权平均值:

def hma_volume(period):
wma_1 = df['nominal'].rolling(period//2).sum()/df['Volume'].rolling(period//2).sum()
wma_2 = df['nominal'].rolling(period).sum()/df['Volume'].rolling(period).sum()
diff = 2 * wma_1 - wma_2
hma = diff.rolling(int(np.sqrt(period))).mean()
return hma
df['nominal'] = df['Adj Close'] * df['Volume']
period = 20
df['hma_volume']=hma_volume(period)
figsize=(12,8)
fig, (ax0,ax1) = plt.subplots(nrows=2, sharex=True, subplot_kw=dict(frameon=True),figsize=figsize) 
df[['Adj Close','hma_volume','hma']].plot(ax=ax0)
ax0.set_title('HMA Volume vs HMA period')
df[['Volume']].plot(ax=ax1)
ax1.set_title('Hull Moving Average')
plt.show()

体量的HMA比第一种方法计算的HMA稍滞后:

策略的回溯测试

为了回测每种策略(方法1和2),我们将计算一个短期和一个长期的HMA:

当短线超过长线时,可以触发买入指令。当短线低于长线时,就会触发卖出指令。

然后我们计算每个信号产生的pnl。

方法1:

#SIGNAL
df['hma_short']=hma(20)
df['hma_long']=hma(30)
df['signal'] = np.where(df['hma_short'] > df['hma_long'],1,-1)
#RETURN
df['signal_shifted']=df['signal'].shift()
## Calculate the returns on the days we trigger a signal
df['returns'] = df['Adj Close'].pct_change()
## Calculate the strategy returns
df['strategy_returns'] = df['signal_shifted'] * df['returns']
## Calculate the cumulative returns
df1=df.dropna()
df1['cumulative_returns'] = (1 + df1['strategy_returns']).cumprod()
#PLOT
figsize=(12,8)
fig, (ax0,ax1) = plt.subplots(nrows=2, sharex=True, subplot_kw=dict(frameon=True),figsize=figsize) 
df[['Adj Close','hma_long','hma_short']].plot(ax=ax0)
ax0.set_title("HMA: Short vs Long")
df[['signal']].plot(ax=ax1,style='-.',alpha=0.4)
ax1.legend()
ax1.set_title("HMA - Signals")
plt.show()
df1['cumulative_returns'].plot(figsize=(10,4))
plt.title("Cumulative Return")
plt.show()

你可以看到每次产生的信号都有一条交叉线:

在数据集的整个时间段内产生的总体回报是正的,即使在某些时期它是负的:

回报率:

df1['cumulative_returns'].tail()[-1]
#1.0229750801053696

方法2:

#SIGNAL
df['hma_volume_short']=hma_volume(20)
df['hma_volume_long']=hma_volume(30)
df['signal'] = np.where(df['hma_volume_short'] > df['hma_volume_long'],1,-1)
#RETURN
df['returns'] = df['Adj Close'].pct_change()
## Calculate the strategy returns
df['strategy_returns'] = df['signal'].shift() * df['returns']
## Calculate the cumulative returns
df2=df.dropna()
df2['cumulative_returns_volume'] = (1 + df2['strategy_returns']).cumprod()
# PLOT
figsize=(12,8)
fig, (ax0,ax1) = plt.subplots(nrows=2, sharex=True, subplot_kw=dict(frameon=True),figsize=figsize) 
df[['Adj Close','hma_volume_short','hma_volume_long']].plot(ax=ax0)
df[['signal']].plot(ax=ax1,style='-.',alpha=0.4)
ax0.set_title("HMA - Volume: Short vs Long")
ax1.legend()
plt.title("HMA - Signals")
plt.show()
figs = (10,4)
df2['cumulative_returns_volume'].plot(figsize = figs)
plt.title("Cumulative Return")
plt.show()

看起来比第一种方法中的HMA更平滑,可以触发的信号更少(在我们的例子中只有1个):

这种策略产生的回报不是很好:0.75(0.775-1=>-24%)

df2['cumulative_returns_volume'].tail()[-1]
#0.7555329108482581

我们来比较两种策略的信号:

df['signal'] = np.where(df['hma_short'] > df['hma_long'],1,-1)
df['signal_volume'] = np.where(df['hma_volume_short'] > df['hma_volume_long'],1,-1)
figsize=(12,8)
df[['signal','signal_volume']].plot(figsize=figsize)
plt.show()

空头头寸的信号比多头头寸更多:

所以仅使用HMA还不足以产生有利可图的策略。我们可以使用相对强弱指数(RSI)和随机指数(Stochastic Oscillator等其他指标来确认交易信号。但是对于时间序列来说,HMA是一个很好的特征工程的方法。

HMA信号的一些解释

交叉信号:当价格越过HMA上方时,可以解释为看涨信号,当价格越过HMA下方时,可以解释为看空信号。它也可以触发买入和卖出信号,正如我们之前已经看到的。(上图点1)。

趋势跟踪信号:HMA也可用于识别趋势并生成趋势跟踪信号。当HMA倾斜向上时,它表示上升趋势,当它倾斜向下时,它表示下降趋势(上图点2)。

反转信号:当价格从下方接近HMA时,看涨反转趋势可能在不久的将来发生(上图点3)。

HMA在时间序列建模的作用

HMA在时间序列建模中的作用主要是作为一个平滑滤波器,可以在一定程度上减少噪声并提高时间序列预测的准确性。在时间序列建模中,经常需要对数据进行平滑处理,以消除异常值和噪声,同时保留趋势和季节性变化的信号。HMA是一种有效的平滑滤波器,它通过加权平均的方式来计算平均值,并对较早的数据施加更大的权重,从而可以更准确地捕捉趋势性信号。

除了作为一个平滑滤波器,HMA还可以作为一个特征提取器来提取时间序列中的特征,并用于建立预测模型。例如,可以使用HMA计算时间序列中的趋势和季节性变化,并将其作为输入特征用于构建ARIMA、VAR或LSTM等预测模型。

总结

HMA不仅在交易中有广泛的应用,也是一种有用的时间序列分析工具。HMA作为一种移动平均线,可以减少时间序列中的噪声和突发性变化,从而更准确地捕捉数据的趋势性和周期性变化。在时间序列分析中,HMA通常用于平滑处理数据,以提高预测的准确性。在实际应用中,HMA常常与其他技术指标和时间序列分析方法相结合,在各种数据分析和预测任务中获取更好的预测结果。

作者:Hanane D.

相关推荐

30天学会Python编程:16. Python常用标准库使用教程

16.1collections模块16.1.1高级数据结构16.1.2示例...

强烈推荐!Python 这个宝藏库 re 正则匹配

Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...

Python爬虫中正则表达式的用法,只讲如何应用,不讲原理

Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...

Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)

实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...

python爬虫教程之爬取当当网 Top 500 本五星好评书籍

我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...

深入理解re模块:Python中的正则表达式神器解析

在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...

如何使用正则表达式和 Python 匹配不以模式开头的字符串

需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...

先Mark后用!8分钟读懂 Python 性能优化

从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...

Python“三步”即可爬取,毋庸置疑

声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...

简单学Python——re库(正则表达式)2(split、findall、和sub)

1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...

Lavazza拉瓦萨再度牵手上海大师赛

阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...

ArkUI-X构建Android平台AAR及使用

本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...

Deepseek写歌详细教程(怎样用deepseek写歌功能)

以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...

“AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测

“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...

AI音乐制作神器揭秘!3款工具让你秒变高手

在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...

取消回复欢迎 发表评论: