相关系数——Correlation coefficient
ztj100 2025-05-02 22:38 15 浏览 0 评论
通常指Pearson product-moment correlation coefficient,统计学参数,用来研究变量间的相关性,通常描述变量间的线性相关性。其范围介于-1和1之间,其绝对值越接近1,说明变量间的相关性越大。
- 当r>0的时候,我们认为两个变量之间是正相关的;
- 当r<0时,两个变量之间是负相关的。当r=0时,两个变量之间是线性无关的。
- 当r=-1和1时,两个变量之间的相关性可以用一次函数(直线的形式)来描述。
Pearson相关系数的计算公式如下:
该公式将变量x和y的协方差与变量x和y的方差积的根号值的比值作为新的参数来衡量变量x和y之间相关性。Pearson相关系数的好处在于归一化了系数的范围,不用考虑量纲值对参数评价的影响,但是该系数有一定的局限性,并不能完全描述所有变量的相关性。除此之外描述变量相关性的系数还有Spearman correlation coefficient(斯皮尔曼相关性系数)和Kendall(肯德尔相关性系数)系数。Spearman系数用于描述具有顺序属性的变量序列,而Kendall序列用于描述具有类别属性的变量。
如何计算Pearson等相关系数呢?
明确了这些系数之后,重点在于如何计算这些系数。可以通过一些统计分析软件,去计算这些系数,常用的有Origin和Spss等。此外也可以使用Python和Matlab的库函数很容易求得这些变量之间的相关系数。以Origin为例:
我们首先可以导入需要分析的变量值到一个工作簿中,然后进入Origin统计菜单,然后点击相关系数进入相关系数页面
在相关系数页面,我们可以选择要选取变量的范围,指定需要计算那些相关性系数,同时可以将变量绘制成散点图便于可视化分析。
通过计算可得变量A和变量B之间是高度相关的,其相关系数值高达0.99。
使用Python计算相关性系数
通过使用Python的pandas库我们可以很容易对相应的变量执行相关系数计算,通过计算可以求得变量1和变量2之间的相关系数为0.99461,这和Origin计算得到的结果一致。此外还可以在corr函数内设置相关系数的计算类别,进一步执行Spearman系数和Kendall系数计算。使用Python的好处是可以方便快捷去执行批量化的相关系数计算。
相关推荐
- 其实TensorFlow真的很水无非就这30篇熬夜练
-
好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...
- 交叉验证和超参数调整:如何优化你的机器学习模型
-
准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...
- 机器学习交叉验证全指南:原理、类型与实战技巧
-
机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...
- 深度学习中的类别激活热图可视化
-
作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...
- 超强,必会的机器学习评估指标
-
大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...
- 机器学习入门教程-第六课:监督学习与非监督学习
-
1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...
- Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置
-
你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...
- 神经网络与传统统计方法的简单对比
-
传统的统计方法如...
- 自回归滞后模型进行多变量时间序列预测
-
下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...
- 苹果AI策略:慢哲学——科技行业的“长期主义”试金石
-
苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...
- 时间序列预测全攻略,6大模型代码实操
-
如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)