百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

根号2的程序计算方法(Python)(编程求根号2)

ztj100 2025-05-02 22:37 34 浏览 0 评论

平常我们用到的 sqrt 函数求一个数的算术平方根,以前一直好奇究竟是如何计算的。

这篇文章我们就一起来探究一下。


二分法

以前我想到的一种方式是二分法;

假设求根号2的平方根;

假设最开始 min = 1.0,max = 2.0;

则它们的中间值 val = (min+max)/2.0;

然后判断 num = val*val 的结果,

如果 num > 2;则 max = val;

如果 num < 2;则 min = val;

如果 num = 2;则 算术平方根是 val,返回。


当然有人会问,一直不等于能,当然我们可以设置计算次数;

比如执行超过 20 次后就返回,这样可以避免无线循环下去。

然而这种方法的收敛速度实在太慢,导致要计算很多次才能达到比较高的精度。


牛顿的方法

网上看到一个说是牛顿的计算方法,假设 f(x) = x^2-2;

在 x^2-2 的曲线上面,先找一个点A(X0,Y0),

过点A做曲线的切线交x轴于B(X1,0);

找到当前点B对应曲线上的点C(X1,Y1);

过点C做曲线的切线交x轴于D(X2,0);

找到当前点D对应曲线上的点E(X2,Y2);

过点E做曲线的切线交x轴于F(X3,0);

.........

按照这个过程一直下去,B D F....将会离曲线与x轴的交点越来越近,即逼近原理。



数学方法

那上面的坐标如何求取呢,对于点A,可以带入一个方便的坐标(1,-1);

由于CD是切线,点C为切点,则有如下关系:

斜率 y' = BC/BD

而:BD 可以看成是点B的x轴坐标减去点D的x轴坐标,即 BD = X1-X2;

BC 就是C点的y值,即Y1;

上面关系就变成:y' = Y1/(X1-X2)

转换一下:X1-X2 = Y1/y'

X2 = X1-Y1/y'

转换成标准的写法,则有: Xn = Xn-1 - f(Xn-1) / f '(Xn-1)

对于曲线 x^2-2 任意一点的切线可以根据多项式导数方式获取,即 f '(Xn-1) = 2x;

则有 Xn = Xn-1 - f(Xn-1) / 2x;

将A点(X0,Y0) 由曲线上的点(1,-1)带入时,

X1 = 1 - (-1/2*1) = 1.5; 此时 Y1 = 1.5^2-2 = 2.25-2 = 0.25;

X2 = 1.5 - 0.25/2*1.5 = 1.416666...667; 此时 Y1 = 0.0069444444...

以此类推

X6 = 1.4142135623730950488016887242096980785696718753772.......


对比网上查找到的根号2前100为如下:

1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850....

可以看到X6写出来的,仅仅是最后两位开始不一样。可见运算次数仅仅6次,精度已经如此高了。


代码实现

由于C/C++没找到比较稳定的高精度计算数据类,在此用Python代替了。

实现代码如下:

from decimal import Decimal
from decimal import getcontext

work_context = getcontext()
work_context.prec = 1000  // 有兴趣的可以试试更高精度


num = Decimal(2)  // 需要开方的数,可以试试3,5,7,11 。。。

def Xn(x, y):
	x -= y/(x*Decimal(2))
	y = x*x-num
	return (x,y)

x = Decimal(1)
y = x*x-num

for i in range(0,20):  // 计算20次精度已经非常高了
	x, y = Xn(x, y)
	print(x)


第20次结果:(好像精度已经达到1000位了)
1.414213562373095048801688724209698078569671875376948073176679737990732478462
10703885038753432764157273501384623091229702492483605585073721264412149709993
58314132226659275055927557999505011527820605714701095599716059702745345968620
14728517418640889198609552329230484308714321450839762603627995251407989687253
39654633180882964062061525835239505474575028775996172983557522033753185701135
43746034084988471603868999706990048150305440277903164542478230684929369186215
80578463111596668713013015618568987237235288509264861249497715421833420428568
60601468247207714358548741556570696776537202264854470158588016207584749226572
26002085584466521458398893944370926591800311388246468157082630100594858704003
18648034219489727829064104507263688131373985525611732204024509122770022694112
75736272804957381089675040183698683684507257993647290607629969413804756548237
28997180326802474420629269124859052181004459842150591120249441341728531478105
80360337107730918286931471017111168391658172688941975871658215212822951848847

是不是感到震惊,代码竟然如此短!?

是的,没有看错,就这么一点点。

有兴趣的小伙伴可以试试
https://tool.lu/coderunner/ 的在线编译器;

左上角选择 Python 然后复制上面的代码,运行看看结果。(如下图)

按照同样的方式,大家是不是可以扩展出3次,5次.....等等的开方计算方式了?


总结

有时候思路正确了,所要做的反而就很少了!

我在心里十分佩服前人的智慧与伟大!

一起努力,加油!

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: