chatgpt-on-wechat:智能对话的全新可能与开源魅力
ztj100 2025-05-02 14:52 64 浏览 0 评论
简介
chatgpt-on-wechat(简称CoW)项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择
GPT3.5/GPT4.0/Claude/Gemini/LinkAI/ChatGLM/KIMI/文心一言/讯飞星火/通义千问/LinkAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。
最新版本支持的功能如下:
- 多端部署: 有多种部署方式可选择且功能完备,目前已支持微信公众号、企业微信应用、飞书、钉钉等部署方式
- 基础对话: 私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT-3.5, GPT-4o-mini, GPT-4o, GPT-4, Claude-3.5, Gemini, 文心一言, 讯飞星火, 通义千问,ChatGLM-4,Kimi(月之暗面), MiniMax
- 语音能力: 可识别语音消息,通过文字或语音回复,支持 azure, baidu, google, openai(whisper/tts) 等多种语音模型
- 图像能力: 支持图片生成、图片识别、图生图(如照片修复),可选择 Dall-E-3, stable diffusion, replicate, midjourney, CogView-3, vision模型
- 丰富插件: 支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结、文档总结和对话、联网搜索等插件
- 知识库: 通过上传知识库文件自定义专属机器人,可作为数字分身、智能客服、私域助手使用,基于 LinkAI 实现
运行环境
支持 Linux、MacOS、Windows 系统(可在Linux服务器上长期运行),同时需安装 Python。
建议Python版本在 3.7.1~3.9.X 之间,推荐3.8版本,3.10及以上版本在 MacOS 可用,其他系统上不确定能否正常运行。
(1) 克隆项目代码:
git clone https://github.com/zhayujie/chatgpt-on-wechat
cd chatgpt-on-wechat/
注: 如遇到网络问题可选择国内镜像
https://gitee.com/zhayujie/chatgpt-on-wechat
(2) 安装核心依赖 (必选):
能够使用itchat创建机器人,并具有文字交流功能所需的最小依赖集合。
pip3 install -r requirements.txt
(3) 拓展依赖 (可选,建议安装):
pip3 install -r requirements-optional.txt
如果某项依赖安装失败可注释掉对应的行再继续
二、配置
配置文件的模板在根目录的config-template.json中,需复制该模板创建最终生效的 config.json 文件:
cp config-template.json config.json
然后在config.json中填入配置,以下是对默认配置的说明,可根据需要进行自定义修改(注意实际使用时请去掉注释,保证JSON格式的完整):
# config.json文件内容示例
{
"model": "gpt-3.5-turbo", # 模型名称, 支持 gpt-3.5-turbo, gpt-4, gpt-4-turbo, wenxin, xunfei, glm-4, claude-3-haiku, moonshot
"open_ai_api_key": "YOUR API KEY", # 如果使用openAI模型则填入上面创建的 OpenAI API KEY
"proxy": "", # 代理客户端的ip和端口,国内环境开启代理的需要填写该项,如 "127.0.0.1:7890"
"single_chat_prefix": ["bot", "@bot"], # 私聊时文本需要包含该前缀才能触发机器人回复
"single_chat_reply_prefix": "[bot] ", # 私聊时自动回复的前缀,用于区分真人
"group_chat_prefix": ["@bot"], # 群聊时包含该前缀则会触发机器人回复
"group_name_white_list": ["ChatGPT测试群", "ChatGPT测试群2"], # 开启自动回复的群名称列表
"group_chat_in_one_session": ["ChatGPT测试群"], # 支持会话上下文共享的群名称
"image_create_prefix": ["画", "看", "找"], # 开启图片回复的前缀
"conversation_max_tokens": 1000, # 支持上下文记忆的最多字符数
"speech_recognition": false, # 是否开启语音识别
"group_speech_recognition": false, # 是否开启群组语音识别
"voice_reply_voice": false, # 是否使用语音回复语音
"character_desc": "你是基于大语言模型的AI智能助手,旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。", # 人格描述
# 订阅消息,公众号和企业微信channel中请填写,当被订阅时会自动回复,可使用特殊占位符。目前支持的占位符有{trigger_prefix},在程序中它会自动替换成bot的触发词。
"subscribe_msg": "感谢您的关注!\n这里是ChatGPT,可以自由对话。\n支持语音对话。\n支持图片输出,画字开头的消息将按要求创作图片。\n支持角色扮演和文字冒险等丰富插件。\n输入{trigger_prefix}#help 查看详细指令。",
"use_linkai": false, # 是否使用LinkAI接口,默认关闭,开启后可国内访问,使用知识库和MJ
"linkai_api_key": "", # LinkAI Api Key
"linkai_app_code": "" # LinkAI 应用或工作流code
}
配置说明:
1.个人聊天
- 个人聊天中,需要以 "bot"或"@bot" 为开头的内容触发机器人,对应配置项 single_chat_prefix (如果不需要以前缀触发可以填写 "single_chat_prefix": [""])
- 机器人回复的内容会以 "[bot] " 作为前缀, 以区分真人,对应的配置项为 single_chat_reply_prefix (如果不需要前缀可以填写 "single_chat_reply_prefix": "")
2.群组聊天
- 群组聊天中,群名称需配置在 group_name_white_list 中才能开启群聊自动回复。如果想对所有群聊生效,可以直接填写 "group_name_white_list": ["ALL_GROUP"]
- 默认只要被人 @ 就会触发机器人自动回复;另外群聊天中只要检测到以 "@bot" 开头的内容,同样会自动回复(方便自己触发),这对应配置项 group_chat_prefix
- 可选配置: group_name_keyword_white_list配置项支持模糊匹配群名称,group_chat_keyword配置项则支持模糊匹配群消息内容,用法与上述两个配置项相同。(Contributed by evolay)
- group_chat_in_one_session:使群聊共享一个会话上下文,配置 ["ALL_GROUP"] 则作用于所有群聊
3.语音识别
- 添加 "speech_recognition": true 将开启语音识别,默认使用openai的whisper模型识别为文字,同时以文字回复,该参数仅支持私聊 (注意由于语音消息无法匹配前缀,一旦开启将对所有语音自动回复,支持语音触发画图);
- 添加 "group_speech_recognition": true 将开启群组语音识别,默认使用openai的whisper模型识别为文字,同时以文字回复,参数仅支持群聊 (会匹配group_chat_prefix和group_chat_keyword, 支持语音触发画图);
- 添加 "voice_reply_voice": true 将开启语音回复语音(同时作用于私聊和群聊)
三、运行
1.本地运行
如果是开发机 本地运行,直接在项目根目录下执行:
python3 app.py # windows环境下该命令通常为 python app.py
终端输出二维码后,进行扫码登录,当输出 "Start auto replying" 时表示自动回复程序已经成功运行了(注意:用于登录的账号需要在支付处已完成实名认证)。扫码登录后你的账号就成为机器人了,可以在手机端通过配置的关键词触发自动回复 (任意好友发送消息给你,或是自己发消息给好友)。
2.服务器部署
使用nohup命令在后台运行程序:
nohup python3 app.py & tail -f nohup.out # 在后台运行程序并通过日志输出二维码
扫码登录后程序即可运行于服务器后台,此时可通过 ctrl+c 关闭日志,不会影响后台程序的运行。使用 ps -ef | grep app.py | grep -v grep 命令可查看运行于后台的进程,如果想要重新启动程序可以先 kill 掉对应的进程。日志关闭后如果想要再次打开只需输入 tail -f nohup.out。此外,scripts 目录下有一键运行、关闭程序的脚本供使用。
多账号支持: 将项目复制多份,分别启动程序,用不同账号扫码登录即可实现同时运行。
特殊指令: 用户向机器人发送 #reset 即可清空该用户的上下文记忆。
3.Docker部署
使用docker部署无需下载源码和安装依赖,只需要获取 docker-compose.yml 配置文件并启动容器即可。
前提是需要安装好 docker 及 docker-compose,安装成功的表现是执行 docker -v 和 docker-compose version (或 docker compose version) 可以查看到版本号,可前往 docker官网 进行下载。
(1) 下载 docker-compose.yml 文件
wget https://open-1317903499.cos.ap-guangzhou.myqcloud.com/docker-compose.yml
下载完成后打开 docker-compose.yml 修改所需配置,如 OPEN_AI_API_KEY 和 GROUP_NAME_WHITE_LIST 等。
(2) 启动容器
在 docker-compose.yml 所在目录下执行以下命令启动容器:
sudo docker compose up -d
运行 sudo docker ps 能查看到 NAMES 为 chatgpt-on-wechat 的容器即表示运行成功。
注意:
- 如果 docker-compose 是 1.X 版本 则需要执行 sudo docker-compose up -d 来启动容器
- 该命令会自动去 docker hub 拉取 latest 版本的镜像,latest 镜像会在每次项目 release 新的版本时生成
最后运行以下命令可查看容器运行日志,扫描日志中的二维码即可完成登录:
sudo docker logs -f chatgpt-on-wechat
(3) 插件使用
如果需要在docker容器中修改插件配置,可通过挂载的方式完成,将 插件配置文件 重命名为 config.json,放置于 docker-compose.yml 相同目录下,并在 docker-compose.yml 中的 chatgpt-on-wechat 部分下添加 volumes 映射:
volumes:
- ./config.json:/app/plugins/config.json
相关来源:
https://github.com/zhayujie/chatgpt-on-wechat
相关推荐
- 其实TensorFlow真的很水无非就这30篇熬夜练
-
好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...
- 交叉验证和超参数调整:如何优化你的机器学习模型
-
准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...
- 机器学习交叉验证全指南:原理、类型与实战技巧
-
机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...
- 深度学习中的类别激活热图可视化
-
作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...
- 超强,必会的机器学习评估指标
-
大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...
- 机器学习入门教程-第六课:监督学习与非监督学习
-
1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...
- Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置
-
你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...
- 神经网络与传统统计方法的简单对比
-
传统的统计方法如...
- 自回归滞后模型进行多变量时间序列预测
-
下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...
- 苹果AI策略:慢哲学——科技行业的“长期主义”试金石
-
苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...
- 时间序列预测全攻略,6大模型代码实操
-
如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)