百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Inpaint Anything 修复图像、视频和3D 场景中的任何内容!开源!

ztj100 2025-04-24 10:43 46 浏览 0 评论

Inpaint Anything 可以修复图像、频和3D 场景中的任何内容!

L; DR:用户可以通过单击来选择图像中的任何对象。借助强大的视觉模型,例如SAMLaMa稳定扩散 (SD),Inpaint Anything能够顺利地移除对象(即Remove Anything)。此外,在用户输入文本的提示下,Inpaint Anything 可以用任何想要的内容填充对象(即Fill Anything)或任意替换其背景(即Replace Anything)。

新闻

[2023/9/15] Remove Anything 3D代码可用!
[2023/4/30] Remove Anything 视频可用!您可以从视频中删除任何对象!
[2023/4/24]支持本地 Web UI!您可以在本地运行演示网站!
[2023/4/22]网站可用!您可以通过界面体验 Inpaint Anything!
[2023/4/22] Remove Anything 3D可用!您可以从 3D 场景中删除任何 3D 对象!
[2023/4/13] arXiv 上的技术报告可用!

功能

  • 移除任何内容
  • 填充任意内容
  • 替换任何内容
  • 删除任何3D内容(新功能)
  • 填充任意3D内容
  • 替换任何3D内容
  • 删除任何视频(新功能)
  • 填充任何视频
  • 替换任何视频

亮点

  • 支持任意宽高比
  • 支持2K分辨率
  • arXiv 上的技术报告可用(新)
  • 网站已上线 ( 新)
  • 本地网页用户界面可用(新)
  • 支持多种模式(即图像、视频和 3D 场景)(新)

删除所有内容

单击图像中的某个对象,Inpainting Anything 将立即将其删除!

  • 点击一个对象;
  • 分割任何模型(SAM)将对象分割出来;
  • 修复模型(例如,LaMa)填补了“空洞”。

安装

需要python>=3.8

python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install -r lama/requirements.txt


在 Windows 中,我们建议您首先安装minicondaAnaconda Powershell Prompt (miniconda3)以管理员身份打开。然后 pip install
./lama_requirements_windows.txt
而不是 ./lama/requirements.txt


用法

下载Segment AnythingLaMa中提供的模型检查点(例如sam_vit_h_4b8939.pthbig-lama),并放入./pretrained_models。为了简单起见,你也可以前往这里,直接下载pretrained_models,将目录放入./,即可获得./pretrained_models

对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM

bash script/remove_anything.sh

指定一个图像和一个点,“Remove Anything”将会删除该点处的对象。

python remove_anything.py \
    --input_img ./example/remove-anything/dog.jpg \
    --coords_type key_in \
    --point_coords 200 450 \
    --point_labels 1 \
    --dilate_kernel_size 15 \
    --output_dir ./results \
    --sam_model_type "vit_h" \
    --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
    --lama_config ./lama/configs/prediction/default.yaml \
    --lama_ckpt ./pretrained_models/big-lama

如果你的机器有显示设备,可以改为--coords_type key_in。如果设置了,运行上述命令后,图像就会显示出来。(1)使用左键单击记录单击的坐标。它支持修改点,并且只记录最后一个点的坐标。(2)使用右键单击完成选择。--coords_type clickclick

演示

填充任意内容

单击一个对象,输入您想要填充的内容,Inpaint Anything 就会填充它!

点击一个对象;

SAM将物体分割出来;

输入文本提示;

文本提示引导的修复模型(例如,稳定扩散)根据文本填补“空洞”。


安装

需要python>=3.8

python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install diffusers transformers accelerate scipy safetensors


用法

下载Segment Anything中提供的模型检查点(例如sam_vit_h_4b8939.pth)并放入./pretrained_models。为了简单起见,您也可以前往,直接下载pretrained_models,将目录放入./,即可获得./pretrained_models

对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM

bash script/fill_anything.sh

指定图像、点和文本提示,然后运行:

python fill_anything.py \
    --input_img ./example/fill-anything/sample1.png \
    --coords_type key_in \
    --point_coords 750 500 \
    --point_labels 1 \
    --text_prompt "a teddy bear on a bench" \
    --dilate_kernel_size 50 \
    --output_dir ./results \
    --sam_model_type "vit_h" \
    --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth

演示

文字提示:“手里拿着相机镜头”

文字提示:“墙上有一幅毕加索的画”

替换任何东西

文字提示:“办公室里的一名男子”

单击一个对象,输入您想要替换的背景,Inpaint Anything 将替换它!

  • 点击一个对象;
  • SAM将物体分割出来;
  • 输入文本提示;
  • 文本提示引导的修复模型(例如,稳定扩散)根据文本替换背景。

安装

需要python>=3.8

python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install diffusers transformers accelerate scipy safetensors


用法

下载Segment Anything中提供的模型检查点(例如sam_vit_h_4b8939.pth)并放入./pretrained_models。为了简单起见,您也可以前往,直接下载pretrained_models,将目录放入./即可./pretrained_models

对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM

bash script/replace_anything.sh

指定图像、点和文本提示,然后运行:

python replace_anything.py \
    --input_img ./example/replace-anything/dog.png \
    --coords_type key_in \
    --point_coords 750 500 \
    --point_labels 1 \
    --text_prompt "sit on the swing" \
    --output_dir ./results \
    --sam_model_type "vit_h" \
    --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth

演示

文字提示:“坐在秋千上”

删除任何 3D 内容

只需单击源视图的第一个视图中的对象,Remove Anything 3D 就可以从整个场景中删除该对象!

  • 单击源视图的第一个视图中的一个对象;
  • SAM将对象分割出来(使用三个可能的掩码);
  • 选择一个面具;
  • 利用OSTrack等跟踪模型来跟踪这些视图中的对象;
  • SAM根据跟踪结果在每个源视图中分割出对象;
  • 利用LaMa等修复模型来修复每个源视图中的对象。
  • 利用NeRF等新颖视图合成模型来合成没有物体的场景的新颖视图。

  • 安装

  • 需要python>=3.8
  • python -m pip install torch torchvision torchaudio
    python -m pip install -e segment_anything
    python -m pip install -r lama/requirements.txt
    python -m pip install jpeg4py lmdb
  • 用法

  • 下载Segment Anything和LaMa中提供的模型 checkpoint (如sam_vit_h_4b8939.pth),放入./pretrained_models。另外,从这里下载OSTrack预训练模型(如vitb_384_mae_ce_32x4_ep300.pth)放入。另外,下载 [nerf_llff_data](如horns),放入。为了简单起见,你也可以到这里,直接下载pretrained_models,将目录放入,即可获得。另外,下载pretrain,将目录放入,即可获得。./pytracking/pretrain./example/3d././pretrained_models./pytracking./pytracking/pretrain
  • 对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM
  • bash script/remove_anything_3d.sh

  • 指定一个 3d 场景、一个点、场景配置和遮罩索引(指示使用第一个视图的哪个遮罩结果),然后 Remove Anything 3D 将从整个场景中删除该对象。
  • python remove_anything_3d.py \
    --input_dir ./example/3d/horns \
    --coords_type key_in \
    --point_coords 830 405 \
    --point_labels 1 \
    --dilate_kernel_size 15 \
    --output_dir ./results \
    --sam_model_type "vit_h" \
    --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
    --lama_config ./lama/configs/prediction/default.yaml \
    --lama_ckpt ./pretrained_models/big-lama \
    --tracker_ckpt vitb_384_mae_ce_32x4_ep300 \
    --mask_idx 1 \
    --config ./nerf/configs/horns.txt \
    --expname horns
  • 通常--mask_idx设置为 1,这通常是第一帧最可信的掩码结果。如果对象没有被很好地分割出来,你可以尝试其他掩码(0 或 2)。

删除所有视频

只需单击视频第一帧中的某个对象,“Remove Anything Video”即可从整个视频中删除该对象!

  • 点击视频第一帧中的某个对象;
  • SAM将对象分割出来(使用三个可能的掩码);
  • 选择一个面具;
  • 利用OSTrack等跟踪模型来跟踪视频中的对象;
  • SAM根据跟踪结果在每帧中分割出物体;
  • 利用STTN等视频修复模型来修复每一帧中的对象。

安装

需要python>=3.8

python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install -r lama/requirements.txt
python -m pip install jpeg4py lmdb

用法

下载Segment Anything和STTN中提供的模型检查点(例如sam_vit_h_4b8939.pth和sttn.pth),并将它们放入./pretrained_models。此外,从这里下载OSTrack预训练模型(例如
vitb_384_mae_ce_32x4_ep300.pth)并将其放入。为了简单起见,您也可以前往这里,直接下载pretrained_models,将目录放入并获取。另外,下载pretrain,将目录放入并获取。

./pytracking/pretrain././pretrained_models./pytracking./pytracking/pretrain

对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM

bash script/remove_anything_video.sh

指定一个视频、一个点、视频 FPS 和蒙版索引(表示使用第一帧的哪个蒙版结果),Remove Anything Video 将从整个视频中删除该对象。

python remove_anything_video.py \
    --input_video ./example/video/paragliding/original_video.mp4 \
    --coords_type key_in \
    --point_coords 652 162 \
    --point_labels 1 \
    --dilate_kernel_size 15 \
    --output_dir ./results \
    --sam_model_type "vit_h" \
    --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
    --lama_config lama/configs/prediction/default.yaml \
    --lama_ckpt ./pretrained_models/big-lama \
    --tracker_ckpt vitb_384_mae_ce_32x4_ep300 \
    --vi_ckpt ./pretrained_models/sttn.pth \
    --mask_idx 2 \
    --fps 25

通常--mask_idx设置为 2,这通常是第一帧最可信的掩码结果。如果对象没有被很好地分割出来,你可以尝试其他掩码(0 或 1)。

演示

素材来源网络致谢!

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: