Inpaint Anything 修复图像、视频和3D 场景中的任何内容!开源!
ztj100 2025-04-24 10:43 40 浏览 0 评论
Inpaint Anything 可以修复图像、视频和3D 场景中的任何内容!
L; DR:用户可以通过单击来选择图像中的任何对象。借助强大的视觉模型,例如SAM、LaMa和稳定扩散 (SD),Inpaint Anything能够顺利地移除对象(即Remove Anything)。此外,在用户输入文本的提示下,Inpaint Anything 可以用任何想要的内容填充对象(即Fill Anything)或任意替换其背景(即Replace Anything)。
新闻
[2023/9/15] Remove Anything 3D代码可用!
[2023/4/30] Remove Anything 视频可用!您可以从视频中删除任何对象!
[2023/4/24]支持本地 Web UI!您可以在本地运行演示网站!
[2023/4/22]网站可用!您可以通过界面体验 Inpaint Anything!
[2023/4/22] Remove Anything 3D可用!您可以从 3D 场景中删除任何 3D 对象!
[2023/4/13] arXiv 上的技术报告可用!
功能
- 移除任何内容
- 填充任意内容
- 替换任何内容
- 删除任何3D内容(新功能)
- 填充任意3D内容
- 替换任何3D内容
- 删除任何视频(新功能)
- 填充任何视频
- 替换任何视频
亮点
- 支持任意宽高比
- 支持2K分辨率
- arXiv 上的技术报告可用(新)
- 网站已上线 ( 新)
- 本地网页用户界面可用(新)
- 支持多种模式(即图像、视频和 3D 场景)(新)
删除所有内容
单击图像中的某个对象,Inpainting Anything 将立即将其删除!
- 点击一个对象;
- 分割任何模型(SAM)将对象分割出来;
- 修复模型(例如,LaMa)填补了“空洞”。
安装
需要python>=3.8
python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install -r lama/requirements.txt
在 Windows 中,我们建议您首先安装miniconda并Anaconda Powershell Prompt (miniconda3)以管理员身份打开。然后 pip install
./lama_requirements_windows.txt而不是 ./lama/requirements.txt。
用法
下载Segment Anything和LaMa中提供的模型检查点(例如sam_vit_h_4b8939.pth和big-lama),并放入./pretrained_models。为了简单起见,你也可以前往这里,直接下载pretrained_models,将目录放入./,即可获得./pretrained_models。
对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM
bash script/remove_anything.sh
指定一个图像和一个点,“Remove Anything”将会删除该点处的对象。
python remove_anything.py \
--input_img ./example/remove-anything/dog.jpg \
--coords_type key_in \
--point_coords 200 450 \
--point_labels 1 \
--dilate_kernel_size 15 \
--output_dir ./results \
--sam_model_type "vit_h" \
--sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
--lama_config ./lama/configs/prediction/default.yaml \
--lama_ckpt ./pretrained_models/big-lama
如果你的机器有显示设备,可以改为--coords_type key_in。如果设置了,运行上述命令后,图像就会显示出来。(1)使用左键单击记录单击的坐标。它支持修改点,并且只记录最后一个点的坐标。(2)使用右键单击完成选择。--coords_type clickclick
演示
填充任意内容
单击一个对象,输入您想要填充的内容,Inpaint Anything 就会填充它!
点击一个对象;
SAM将物体分割出来;
输入文本提示;
文本提示引导的修复模型(例如,稳定扩散)根据文本填补“空洞”。
安装
需要python>=3.8
python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install diffusers transformers accelerate scipy safetensors
用法
下载Segment Anything中提供的模型检查点(例如sam_vit_h_4b8939.pth)并放入./pretrained_models。为了简单起见,您也可以前往,直接下载pretrained_models,将目录放入./,即可获得./pretrained_models。
对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM
bash script/fill_anything.sh
指定图像、点和文本提示,然后运行:
python fill_anything.py \
--input_img ./example/fill-anything/sample1.png \
--coords_type key_in \
--point_coords 750 500 \
--point_labels 1 \
--text_prompt "a teddy bear on a bench" \
--dilate_kernel_size 50 \
--output_dir ./results \
--sam_model_type "vit_h" \
--sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth
演示
文字提示:“手里拿着相机镜头”
文字提示:“墙上有一幅毕加索的画”
替换任何东西
文字提示:“办公室里的一名男子”
单击一个对象,输入您想要替换的背景,Inpaint Anything 将替换它!
- 点击一个对象;
- SAM将物体分割出来;
- 输入文本提示;
- 文本提示引导的修复模型(例如,稳定扩散)根据文本替换背景。
安装
需要python>=3.8
python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install diffusers transformers accelerate scipy safetensors
用法
下载Segment Anything中提供的模型检查点(例如sam_vit_h_4b8939.pth)并放入./pretrained_models。为了简单起见,您也可以前往,直接下载pretrained_models,将目录放入./即可./pretrained_models。
对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM
bash script/replace_anything.sh
指定图像、点和文本提示,然后运行:
python replace_anything.py \
--input_img ./example/replace-anything/dog.png \
--coords_type key_in \
--point_coords 750 500 \
--point_labels 1 \
--text_prompt "sit on the swing" \
--output_dir ./results \
--sam_model_type "vit_h" \
--sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth
演示
文字提示:“坐在秋千上”
删除任何 3D 内容
只需单击源视图的第一个视图中的对象,Remove Anything 3D 就可以从整个场景中删除该对象!
- 单击源视图的第一个视图中的一个对象;
- SAM将对象分割出来(使用三个可能的掩码);
- 选择一个面具;
- 利用OSTrack等跟踪模型来跟踪这些视图中的对象;
- SAM根据跟踪结果在每个源视图中分割出对象;
- 利用LaMa等修复模型来修复每个源视图中的对象。
- 利用NeRF等新颖视图合成模型来合成没有物体的场景的新颖视图。
- 安装
- 需要python>=3.8
- python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install -r lama/requirements.txt
python -m pip install jpeg4py lmdb - 用法
- 下载Segment Anything和LaMa中提供的模型 checkpoint (如sam_vit_h_4b8939.pth),放入./pretrained_models。另外,从这里下载OSTrack预训练模型(如vitb_384_mae_ce_32x4_ep300.pth)放入。另外,下载 [nerf_llff_data](如horns),放入。为了简单起见,你也可以到这里,直接下载pretrained_models,将目录放入,即可获得。另外,下载pretrain,将目录放入,即可获得。./pytracking/pretrain./example/3d././pretrained_models./pytracking./pytracking/pretrain
- 对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM
- bash script/remove_anything_3d.sh
- 指定一个 3d 场景、一个点、场景配置和遮罩索引(指示使用第一个视图的哪个遮罩结果),然后 Remove Anything 3D 将从整个场景中删除该对象。
- python remove_anything_3d.py \
--input_dir ./example/3d/horns \
--coords_type key_in \
--point_coords 830 405 \
--point_labels 1 \
--dilate_kernel_size 15 \
--output_dir ./results \
--sam_model_type "vit_h" \
--sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
--lama_config ./lama/configs/prediction/default.yaml \
--lama_ckpt ./pretrained_models/big-lama \
--tracker_ckpt vitb_384_mae_ce_32x4_ep300 \
--mask_idx 1 \
--config ./nerf/configs/horns.txt \
--expname horns - 通常--mask_idx设置为 1,这通常是第一帧最可信的掩码结果。如果对象没有被很好地分割出来,你可以尝试其他掩码(0 或 2)。
删除所有视频
只需单击视频第一帧中的某个对象,“Remove Anything Video”即可从整个视频中删除该对象!
- 点击视频第一帧中的某个对象;
- SAM将对象分割出来(使用三个可能的掩码);
- 选择一个面具;
- 利用OSTrack等跟踪模型来跟踪视频中的对象;
- SAM根据跟踪结果在每帧中分割出物体;
- 利用STTN等视频修复模型来修复每一帧中的对象。
安装
需要python>=3.8
python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install -r lama/requirements.txt
python -m pip install jpeg4py lmdb
用法
下载Segment Anything和STTN中提供的模型检查点(例如sam_vit_h_4b8939.pth和sttn.pth),并将它们放入./pretrained_models。此外,从这里下载OSTrack预训练模型(例如
vitb_384_mae_ce_32x4_ep300.pth)并将其放入。为了简单起见,您也可以前往这里,直接下载pretrained_models,将目录放入并获取。另外,下载pretrain,将目录放入并获取。
./pytracking/pretrain././pretrained_models./pytracking./pytracking/pretrain
对于 MobileSAM,sam_model_type 应使用“vit_t”,sam_ckpt 应使用“./weights/mobile_sam.pt”。对于 MobileSAM 项目,请参阅MobileSAM
bash script/remove_anything_video.sh
指定一个视频、一个点、视频 FPS 和蒙版索引(表示使用第一帧的哪个蒙版结果),Remove Anything Video 将从整个视频中删除该对象。
python remove_anything_video.py \
--input_video ./example/video/paragliding/original_video.mp4 \
--coords_type key_in \
--point_coords 652 162 \
--point_labels 1 \
--dilate_kernel_size 15 \
--output_dir ./results \
--sam_model_type "vit_h" \
--sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
--lama_config lama/configs/prediction/default.yaml \
--lama_ckpt ./pretrained_models/big-lama \
--tracker_ckpt vitb_384_mae_ce_32x4_ep300 \
--vi_ckpt ./pretrained_models/sttn.pth \
--mask_idx 2 \
--fps 25
通常--mask_idx设置为 2,这通常是第一帧最可信的掩码结果。如果对象没有被很好地分割出来,你可以尝试其他掩码(0 或 1)。
演示
素材来源网络致谢!
相关推荐
- 30天学会Python编程:16. Python常用标准库使用教程
-
16.1collections模块16.1.1高级数据结构16.1.2示例...
- 强烈推荐!Python 这个宝藏库 re 正则匹配
-
Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...
- Python爬虫中正则表达式的用法,只讲如何应用,不讲原理
-
Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...
- Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)
-
实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...
- python爬虫教程之爬取当当网 Top 500 本五星好评书籍
-
我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...
- 深入理解re模块:Python中的正则表达式神器解析
-
在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...
- 如何使用正则表达式和 Python 匹配不以模式开头的字符串
-
需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...
- 先Mark后用!8分钟读懂 Python 性能优化
-
从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...
- Python“三步”即可爬取,毋庸置疑
-
声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...
- 简单学Python——re库(正则表达式)2(split、findall、和sub)
-
1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...
- Lavazza拉瓦萨再度牵手上海大师赛
-
阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...
- ArkUI-X构建Android平台AAR及使用
-
本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...
- Deepseek写歌详细教程(怎样用deepseek写歌功能)
-
以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...
- “AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测
-
“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...
- AI音乐制作神器揭秘!3款工具让你秒变高手
-
在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 30天学会Python编程:16. Python常用标准库使用教程
- 强烈推荐!Python 这个宝藏库 re 正则匹配
- Python爬虫中正则表达式的用法,只讲如何应用,不讲原理
- Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)
- python爬虫教程之爬取当当网 Top 500 本五星好评书籍
- 深入理解re模块:Python中的正则表达式神器解析
- 如何使用正则表达式和 Python 匹配不以模式开头的字符串
- 先Mark后用!8分钟读懂 Python 性能优化
- Python“三步”即可爬取,毋庸置疑
- 简单学Python——re库(正则表达式)2(split、findall、和sub)
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)