百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

基于OpenCV的车辆变道检测

ztj100 2025-04-24 10:39 18 浏览 0 评论

本期教程我们将和小伙伴们一起研究如何使用计算机视觉和图像处理技术来检测汽车在行驶中时汽车是否在改变车道!大家一定听说过使用OpenCV 的haar级联文件可以检测到面部、眼睛等,但是如果目标是汽车,公共汽车呢?


01. 数据集

我们将道路上汽车的视频文件用作数据集。当然可以使用图像数据集检测来汽车,但是由于汽车在变道时我们需要通过弹出窗口提供警报,因此对于这些动态情况,视频输入更为可行。


02. 输入

第一步是提供要在本教程中使用的输入-OpenCV的haar级联文件,用于检测汽车的坐标,道路上的汽车的视频文件-

cascade_src = 'cascade/cars.xml'
video_src = 'dataset/cars.mp4'

cap = cv2.VideoCapture(video_src)
car_cascade = cv2.CascadeClassifier(cascade_src)

cv2.VideoCapture()方法用于捕获输入视频,视频通常为每秒25个图像/帧(fps)。捕获输入后,使用循环提取帧,并使用汽车的haar级联文件检测到的坐标,我们在循环中在汽车周围绘制一个矩形,以在对捕获的帧执行其他操作时获得一致性。

while(1):
# Take each frame
    _, frame = cap.read()
    cars = car_cascade.detectMultiScale(frame, 1.1, 1)
for (x,y,w,h) in cars:
        roi = cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)   #ROI is region of interest

在OpenCV中,使用BGR而不是RGB,因此(0,0,255)将在汽车上绘制一个红色矩形,而不是蓝色。


03. 图像处理

如果帧的分辨率很高,则会减慢执行的操作,此外,该帧还包含噪声,可以使用模糊降低噪声,这里使用高斯模糊。

3.1 HSV框架

在此,我们使用从cv2.VideoCapture()捕获的帧中获得的HSV帧仅突出显示汽车转弯的点,并遮挡其余道路和在道路上直行的汽车。设置上限和下限阈值是为了定义HSV中的颜色范围,以查看汽车改变车道的点,并用作框架的遮罩。以下是用于获取此代码的代码段-

#canceling noise in the video frames using blur
frame = cv2.GaussianBlur(frame,(21,21),0)
    # Convert BGR to HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    # define range of color in HSV to see the points at which the car is changing angles
lower_limit = np.array([0,150,150])
upper_limit = np.array([10,255,255])
    # Threshold the HSV image to get only the thresholded colors
mask = cv2.inRange(hsv, lower_limit, upper_limit)

3.2腐蚀与膨胀

腐蚀和膨胀是图像处理中常使用的两个基本形态学操作。腐蚀算子在内核区域上具有局部最小值的作用。腐蚀用于减少图像中的斑点噪声,斑点会从图像中的对象边界腐蚀掉。膨胀具有局部最大值运算符的作用。当添加像素以平滑图像中对象的边界时,将使用膨胀来重新获得一些丢失的区域。现在,通过基本形态学操作(腐蚀和膨胀)处理从HSV帧的第一步生成的蒙版。通过将帧和掩码之间的按位与运算应用于获取 ROI(感兴趣区域),可以生成结果帧。

kernel = np.ones((3,3),np.uint8)
    kernel_lg = np.ones((15,15),np.uint8)
    # image processing technique called the erosion is used for noise reduction
    mask = cv2.erode(mask,kernel,iterations = 1)
    # image processing technique called the dilation is used to regain some lost area
    mask = cv2.dilate(mask,kernel_lg,iterations = 1)
    # Bitwise-AND to get black everywhere else except the region of interest
    result = cv2.bitwise_and(frame,frame, mask= mask)

3.3车道检测

canny边缘检测器与霍夫线变换一起用于检测车道。

canny边缘检测(作者提供的图像)


04. 边缘检测


诸如canny边缘检测器之类的算法用于查找将图像中的边缘像素,但是由于我们无法融合某些点和边缘,因此它无法找到实际对象,在这里我们可以使用OpenCV中的cv2.findContours()实现轮廓的查找。

定义-“轮廓是代表图像中曲线的点的列表。” 等高线由序列表示(序列是结构的链表),每个序列都编码有关下一点位置的信息。我们在ROI中多次运行cv2.findContours()以获得实体,然后使用cv2.drawContours()绘制轮廓区域。等高线可以是点,边,多边形等,因此在绘制等高线时,我们进行多边形近似,以找到边的长度和区域的面积。函数cv2.drawContours()的工作方式是从根节点开始绘制一棵树(数据结构),然后将后续点,边界框和freeman链代码连接在一起。

找到轮廓后的另一个重要任务是匹配它们。轮廓匹配意味着我们有两个单独的计算轮廓相互比较,或者轮廓与抽象模板相比较。

thresh = mask
contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# define a minimum area for a contour (ignoring all values below min)
min_area = 1000
cont_filtered = []
# filter out all contours below a min_area
for cont in contours:
  if cv2.contourArea(cont) > min_area:
    cont_filtered.append(cont)

cnt = cont_filtered[0]
# draw the rectangles around contours
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(frame,[box],0,(0,0,255),2)
rows,cols = thresh.shape[:2]
[vx,vy,x,y] = cv2.fitLine(cnt, cv2.DIST_L2,0,0.01,0.01)
lefty = int((-x*vy/vx) + y)
righty = int(((cols-x)*vy/vx)+y)
cv2.line(frame,(cols-1,righty),(0,lefty),(0,255,0),2)

05. 中心矩


我们可以通过计算轮廓矩来比较两个轮廓。“中心矩是通过将轮廓的所有像素相加而得出的轮廓的总体特征。”

中心矩型-

  • 空间矩: m00,m10,m01,m20,m11,m02,m30,m21,m12,m03。
  • 中心矩: mu20,mu11,mu02,mu30,mu21,mu12,mu03。
  • Hu矩:有七个Hu矩(h0 — h6)或(h1 — h7),两种表示法都使用。

我们使用cv2.fitEllipse()计算矩并将椭圆拟合在这些点上。从轮廓和力矩中得出角度,因为改变车道需要45度旋转,这被认为是汽车转弯角度的阈值。

现在,我们不仅可以打印检测变化的车道,还可以使用Tkinter作为一个简单的弹出窗口来提醒更改。

使用Greenline测量角度,并在框架中的汽车上绘制矩形

弹出警报(作者提供的图片)

输出


06. 总结


在本教程中,使用车道变更检测方法探索了智能汽车导航的小型演示。计算机视觉正在迅速发展,其应用不仅在汽车的本地导航中而且在火星导航和产品检查领域中也在不断发展,甚至医疗应用也正在开发中,并可以在早期用于检测X射线图像中的癌症和肿瘤阶段。

参考文献:

  1. Bradski, Gary and Kaehler, Adrian, Learning OpenCV: Computer Vision in C++ with the OpenCV Library, O’Reilly Media, Inc., 2nd edition, 2013, @10.5555/2523356, ISBN — 1449314651.
  2. Laganiere, Robert, OpenCV Computer Vision Application Programming Cookbook, Packt Publishing, 2nd edition, 2014, @10.5555/2692691, ISBN — 1782161481.

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: