百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

Python re模块:正则表达式综合指南

ztj100 2025-04-11 09:51 67 浏览 0 评论

Python re 的模块提供对正则表达式 (regex) 的支持,正则表达式是匹配文本中模式的强大工具。正则表达式广泛用于数据验证、文本处理等。

快速入门re

要在 Python 中使用正则表达式,需要导入以下 re 模块:

import re

re 模块提供了广泛的模式匹配、搜索、拆分和替换文本的功能。

正则表达式的基本语法

正则表达式由定义搜索模式的字符序列组成。以下是一些基本元素:

  • 文字字符:匹配自己。例如, a 匹配字符“a”。
  • 元字符:具有特殊含义,例如 . (除换行符外的任何字符)、 ^ (字符串开头)、 $ (字符串结尾)、 * (0 次或更多次)、 + (1 次或多次出现)、 ? (0 或 1 次出现)、 {} (特定出现次数)、 [] (字符类)、 | (或)、 () (分组)。

常用re功能

re.match()

re.match() 函数检查模式是否与字符串开头的模式匹配。

import re
pattern = r'\d+'
text = "123abc"
match = re.match(pattern, text)
if match:
    print(f"Matched: {match.group()}")
else:
    print("No match")

输出:

匹配: 123

re.search()

re.search() 函数扫描整个字符串以查找匹配项。

import re
pattern = r'\d+'
text = "abc123xyz"
search = re.search(pattern, text)
if search:
    print(f"Found: {search.group()}")
else:
    print("Not found")

输出:
找到: 123

re.findall()

re.findall() 函数以列表形式返回字符串中模式的所有非重叠匹配项。

import re
pattern = r'\d+'
text = "abc123xyz456"
matches = re.findall(pattern, text)
print(f"Matches: {matches}")

输出:
比赛: ['123', '456']

re.finditer()

re.finditer() 函数返回一个迭代器,为所有非重叠匹配项生成匹配对象。

import re
pattern = r'\d+'
text = "abc123xyz456"
matches = re.finditer(pattern, text)
for match in matches:
    print(f"Match: {match.group()}")

输出:
匹配: 123
匹配: 456

re.sub()

re.sub() 函数将匹配项替换为指定的替换字符串。

import re
pattern = r'\d+'
replacement = '#'
text = "abc123xyz456"
result = re.sub(pattern, replacement, text)
print(f"Result: {result}")

输出:
结果:abc#xyz#

re.split()

re.split() 函数按模式的出现次数拆分字符串。

import re
pattern = r'\d+'
text = "abc123xyz456"
split_result = re.split(pattern, text)
print(f"Split result: {split_result}")

输出:

拆分结果: ['abc', 'xyz', '']

特殊序列和字符类

正则表达式为更复杂的模式提供特殊的序列和字符类。

  • \d:匹配任何数字。等效于 [0-9]
  • \D:匹配任何非数字。
  • \w:匹配任何字母数字字符。等效于 [a-zA-Z0-9_]
  • \W:匹配任何非字母数字字符。
  • \s:匹配任何空格字符。
  • \S:匹配任何非空格字符。
  • [abc]:匹配括号内的任何字符。
  • [^abc]:匹配括号内的任何字符。
  • a|b:匹配 ab

分组和捕获

括号 () 用于对比赛的某些部分进行分组和捕获。

import re
pattern = r'(\d+)-(\w+)'
text = "123-abc"
match = re.search(pattern, text)
if match:
    print(f"Group 1: {match.group(1)}")
    print(f"Group 2: {match.group(2)}")

输出:

第 1 组:123
第 2 组:abc

前瞻和后瞻

Lookahead 和 lookbehind 断言允许在不消耗字符串字符的情况下创建更复杂的模式。

  • Lookahead (?=...):断言断言后面的内容为 true。
import re
pattern = r'\d+(?=abc)'
text = "123abc456"
match = re.search(pattern, text)
if match:
    print(f"Lookahead match: {match.group()}")

输出:

前瞻匹配: 123

  • 负面展望(?!...):断言断言后面的内容是错误的。
import re
pattern = r'\d+(?!abc)'
text = "123def456abc"
matches = re.findall(pattern, text)
print(f"Negative lookahead matches: {matches}")

输出:

负面前瞻匹配: ['123', '456']

  • Lookbehind (?<=...):断言断言之前的内容为真。
import re
pattern = r'(?<=abc)\d+'
text = "abc123def456"
match = re.search(pattern, text)
if match:
    print(f"Lookbehind match: {match.group()}")

输出:

后视匹配:123

  • 否定后视 (?<!...):断言断言之前的内容是错误的。
import re
pattern = r'(?<!abc)\d+'
text = "abc123def456"
matches = re.findall(pattern, text)
print(f"Negative lookbehind matches: {matches}")

输出:

负后视匹配:['456']

实例

电子邮件验证

正则表达式的常见用途是电子邮件验证。

import re
pattern = r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+
text = "example@example.com" match = re.match(pattern, text) if match: print("Valid email") else: print("Invalid email")

输出:

有效的电子邮件

电话号码提取

使用正则表达式可以很容易地从文本中提取电话号码。

import re
pattern = r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b'
text = "Contact me at 123-456-7890 or 987.654.3210"
matches = re.findall(pattern, text)
print(f"Phone numbers: {matches}")

输出:

电话号码: ['123–456–7890', '987.654.3210']

解析日志

正则表达式通常用于分析日志文件中的特定信息。

import re
pattern = r'(\d{4}-\d{2}-\d{2}) (\d{2}:\d{2}:\d{2}),(\d+) - (\w+) - (.*)'
log_entry = "2024-06-03 12:34:56,789 - INFO - This is a log message"
match = re.match(pattern, log_entry)
if match:
    print(f"Date: {match.group(1)}")
    print(f"Time: {match.group(2)}")
    print(f"Milliseconds: {match.group(3)}")
    print(f"Level: {match.group(4)}")
    print(f"Message: {match.group(5)}")

输出:
日期: 2024–06–03
时间: 12:34:56
毫秒: 789
级别: INFO

消息:这是一条日志消息

正则表达式中的高级主题

为了扩展我们对该 re 模块的理解,让我们深入研究一些高级主题和技术。其中包括更复杂的模式匹配、处理不同类型的输入数据以及优化使用正则表达式时的性能。

高级模式匹配

非贪婪量词

默认情况下,正则表达式中的量词是贪婪的,这意味着它们会尝试匹配尽可能多的文本。非贪婪量词尽可能少地匹配文本。

  • 贪婪: .* 尽可能多地匹配。
  • 非贪婪: .*? 尽可能少地匹配。
import re
text = "
content
another content
" pattern_greedy = r'
.*
' pattern_non_greedy = r'
.*?
' match_greedy = re.findall(pattern_greedy, text) match_non_greedy = re.findall(pattern_non_greedy, text) print(f"Greedy match: {match_greedy}") print(f"Non-Greedy match: {match_non_greedy}")

输出:

贪婪匹配:['

内容
另一个内容
']

非贪婪匹配: ['
content
', '
another content
']

反向引用

反向引用允许您重用部分匹配文本。它们通过捕获组创建,然后使用 \1\2 等进行引用。

import re
pattern = r'(\b\w+)\s+\1'
text = "hello hello world world"
matches = re.findall(pattern, text)
print(f"Backreferences match: {matches}")

输出:

反向引用匹配:['hello', 'world']

条件表达式

正则表达式中的条件表达式通过测试特定捕获组的存在来允许更复杂的逻辑。

import re
pattern = r'(a)?b(?(1)c|d)'
text1 = "abc"
text2 = "bd"
match1 = re.match(pattern, text1)
match2 = re.match(pattern, text2)
print(f"Conditional match 1: {match1.group() if match1 else 'No match'}")
print(f"Conditional match 2: {match2.group() if match2 else 'No match'}")

输出:

条件匹配 1:abc
条件匹配 2:bd

处理不同类型的输入数据

多行字符串

使用多行字符串时, re.MULTILINE 标志允许 ^$ 分别匹配每行的开头和结尾。

import re
pattern = r'^\d+'
text = """123
abc
456
def"""
matches = re.findall(pattern, text, re.MULTILINE)
print(f"Multiline matches: {matches}")

输出:

多行匹配: ['123', '456']

Dotall 模式

re.DOTALL 标志允许 . 字符匹配换行符,从而可以匹配整个文本,包括换行符。

import re
pattern = r'.*'
text = """line1
line2
line3"""
match = re.match(pattern, text, re.DOTALL)
print(f"Dotall match: {match.group() if match else 'No match'}")

输出:

Dotall 匹配:line1
2号线
3号线

Unicode 支持

re.UNICODE 标志支持完全 Unicode 匹配,这对于处理国际文本特别有用。

import re
pattern = r'\w+'
text = "Café Müller"
matches = re.findall(pattern, text, re.UNICODE)
print(f"Unicode matches: {matches}")

输出:

Unicode 匹配: ['Café', 'Müller']

优化正则表达式性能

编译正则表达式

编译正则表达式可以在多次使用同一模式时提高性能。

import re
pattern = re.compile(r'\d+')
text = "123 456 789"
matches = pattern.findall(text)
print(f"Compiled matches: {matches}")

输出:

编译匹配项: ['123', '456', '789']

使用原始字符串

原始字符串(前缀 r )可防止 Python 将反斜杠解释为转义字符,从而更轻松地编写和读取正则表达式。

import re
pattern = r'\b\d{3}\b'
text = "100 200 300"
matches = re.findall(pattern, text)
print(f"Raw string matches: {matches}")

输出:

原始字符串匹配:['100', '200', '300']

高级实例

提取 URL

从文本中提取 URL 是正则表达式的常见用例。

import re
pattern = r'https?://[^\s<>"]+|www\.[^\s<>"]+'
text = "Visit https://www.linkedin.com/in/gaurav-kumar007/ and https://topmate.io/gaurav_kumar_quant for more info. Also check https://docs.python.org/3/howto/regex.html."
matches = re.findall(pattern, text)
print(f"URLs: {matches}")

输出:

网址: ['
https://www.linkedin.com/in/gaurav-kumar007/', '
https://topmate.io/gaurav_kumar_quant', '
https://docs.python.org/3/howto/regex.html.']

验证密码

密码验证通常需要复杂的规则,这些规则可以使用正则表达式来实现。

import re
pattern = r'^(?=.*[A-Z])(?=.*[a-z])(?=.*\d)(?=.*[@$!%*?&])[A-Za-z\d@$!%*?&]{8,}
passwords = ["Password1!", "pass", "PASSWORD1!", "Pass1!", "ValidPass123!"] for pwd in passwords: match = re.match(pattern, pwd) print(f"Password: {pwd} - {'Valid' if match else 'Invalid'}")

输出:

密码:Password1!— 有效
密码:pass — 无效

密码:PASSWORD1!— 无效

密码:Pass1!— 无效

密码:ValidPass123!— 有效

数据清洗

正则表达式对于清理和转换数据非常有用。例如,从文本中删除多余的空格或不需要的字符。

import re
text = "This    is  a  test   string."
# Remove extra spaces
cleaned_text = re.sub(r'\s+', ' ', text).strip()
print(f"Cleaned text: {cleaned_text}")

输出:

已清理的文本:这是一个测试字符串。

解析日期

使用正则表达式可以有效地从文本中提取和格式化日期。

import re
pattern = r'(\d{4})-(\d{2})-(\d{2})'
text = "Dates: 2024-06-03, 2023-12-25, and 2025-01-01."
matches = re.findall(pattern, text)
formatted_dates = [f"{year}/{month}/{day}" for year, month, day in matches]
print(f"Formatted dates: {formatted_dates}")

输出:

格式日期: ['2024/06/03', '2023/12/25', '2025/01/01']

相关推荐

sharding-jdbc实现`分库分表`与`读写分离`

一、前言本文将基于以下环境整合...

三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么

在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...

MySQL8行级锁_mysql如何加行级锁

MySQL8行级锁版本:8.0.34基本概念...

mysql使用小技巧_mysql使用入门

1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...

MySQL/MariaDB中如何支持全部的Unicode?

永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...

聊聊 MySQL Server 可执行注释,你懂了吗?

前言MySQLServer当前支持如下3种注释风格:...

MySQL系列-源码编译安装(v5.7.34)

一、系统环境要求...

MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了

对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...

MySQL字符问题_mysql中字符串的位置

中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...

深圳尚学堂:mysql基本sql语句大全(三)

数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...

MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?

大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...

一文讲清怎么利用Python Django实现Excel数据表的导入导出功能

摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...

用DataX实现两个MySQL实例间的数据同步

DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...

MySQL数据库知识_mysql数据库基础知识

MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...

如何为MySQL中的JSON字段设置索引

背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...

取消回复欢迎 发表评论: