百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

分享几个令人相见恨晚的Pandas函数

ztj100 2025-04-09 22:45 30 浏览 0 评论

作者:俊欣

来源:关于数据分析与可视化

又是新的一周,今天小编给大家来分享几个好用到爆的Pandas函数,或许不那么为人所知,但是相信会给大家在数据分析与挖掘的过程中起到不小的帮助。

创建数据集

首先我们先来创建一个数据集,代码如下

import numpy as np
import pandas as pd
df = pd.DataFrame({
   "date": pd.date_range(start="2021-11-20", periods=100, freq="D"),
   "class": ["A","B","C","D"] * 25,
   "amount": np.random.randint(10, 100, size=100)
})
df.head()

output

To_period

当我们在处理日期数据时,有时候需要提取出月份的数据,有时候我们需要的是季度的数据,这里就可以通过to_period()方法来实现了,代码如下

df["year"] = df["date"].dt.to_period("Y")
df["month"] = df["date"].dt.to_period("M")
df["day"] = df["date"].dt.to_period("D")
df["quarter"] = df["date"].dt.to_period("Q")
df.head()

output

在此基础之上,我们可以进一步对数据进行分析,例如

df["month"].value_counts()

output

我们想要筛选出“2021-12”该时段的数据,代码如下

df[df['month'] == "2021-12"].head()

output

生成假数据

我们在建模、训练模型的时候,需要用到大量的数据集,然鹅很多时候我们会遇到数据量不够的情况,小编之前写过一篇相关的教程,使用Python中的faker模块或者通过一些深度学习的模型来生成假数据

【原创好文】当机器学习遇到数据量不够时,这几个Python技巧为你化解难题

pandas模块中也有一些相关的方法来帮助我们解决数据量不够的问题,代码如下

pd.util.testing.makeDataFrame()

output

默认生成的假数据是30行4列的,当然我们也可以指定生成数据的行数和列数,代码如下

pd.util.testing.makeCustomDataframe(nrows=1000, ncols=5)

output

要是我们希望创建的数据集当中存在的缺失值,调用的则是makeMissingDataframe()方法

pd.util.testing.makeMissingDataframe()

output

要是我们希望创建的数据集包含了整型、浮点型以及时间日期等其他类型的数据,调用的是makeMixedDataFrame()方法

pd.util.testing.makeMixedDataFrame()

output

将数据集导出至压缩包中

众多周知,我们可以轻松地将数据集导出至csv文件、json格式的文件等等,但是有时候我们想要节省存储的资源,例如在文件的传送过程当中,想将其导出至压缩包当中,代码如下

df = pd.util.testing.makeCustomDataframe(nrows=1000, ncols=5)
df.shape

output

(1000, 5)

我们先将其存储成csv格式的文件,看一下文件的大小,结果大概是占到了45KB的存储,代码如下

import os
os.path.getsize("sample.csv")/1024

output

44

要是最后导出至压缩包当中呢,我们看一下文件的大小有多少?代码如下

df.to_csv('sample.csv.gz', compression='gzip')
os.path.getsize('sample.csv.gz')/1024

output

14

结果只占到了13KB的空间大小,大概是前者的三分之一吧,当然pandas还能够直接读取压缩包变成DataFrame数据集,代码如下

df = pd.read_csv('sample.csv.gz', compression='gzip', index_col=0)
df.head()

output

一行代码让Pandas提速

很多时候我们想要通过pandas中的apply()方法将自定义函数或者是一些内部自带的函数应用到DataFrame每一行的数据当中,如果行数非常多的话,处理起来会非常地耗时间,这里使用的是swifter可以自动使apply()方法的运行速度达到最快,并且只需要一行代码即可,例如

import swifter
 
df.swifter.apply(lambda x: x.max() - x.mean())

当然使用前,我们需要先前下载该模块,使用pip命令

pip install swifter

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: