百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

【Python数据分析系列】循环遍历DataFrame每行并处理结果新增列

ztj100 2025-04-09 22:45 42 浏览 0 评论

这是我的第389篇原创文章。

一、引言

在Python中,使用 pandas 库处理 DataFrame 是非常常见的操作。如果你需要循环遍历每一行,并根据处理结果在该行新增几列,假设我们有一个 DataFrame,包含两列 A 和 B,我们希望对每一行进行处理,并新增两列 C 和 D,其中 C = A + B,D = A * B。可以通过以下几种方式实现。

二、实现过程

2.1 使用apply方法

apply 方法是处理 DataFrame 的高效方式,适用于对每一行或每一列进行操作。如果你需要对每一行进行处理,并在该行新增几列,可以定义一个函数,然后将其应用到每一行。

import pandas as pd

# 创建一个示例 DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)

# 定义一个函数,用于处理每一行
def process_row(row):
    row['C'] = row['A'] + row['B']
    row['D'] = row['A'] * row['B']
    return row

# 使用 apply 方法对每一行应用处理函数
df = df.apply(process_row, axis=1)

print(df)

2.2使用iterrows或itertuples

如果你需要更细致地控制每一行的处理过程,可以使用 iterrows 或 itertuples 遍历每一行,然后手动更新 DataFrame。

import pandas as pd

# 创建一个示例 DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)

# 遍历每一行,处理并新增列
for index, row in df.iterrows():
    df.loc[index, 'C'] = row['A'] + row['B']
    df.loc[index, 'D'] = row['A'] * row['B']

print(df)

2.3 使用 assign方法

assign 方法可以用于在 DataFrame 中新增列,它返回一个新的 DataFrame,不会修改原始数据。

import pandas as pd

# 创建一个示例 DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)

# 使用 assign 方法新增列
df = df.assign(
    C=lambda x: x['A'] + x['B'],
    D=lambda x: x['A'] * x['B']
)

print(df)

2.4 直接使用向量化操作

如果处理逻辑比较简单,可以直接使用向量化操作,这种方式通常比循环更高效。

import pandas as pd

# 创建一个示例 DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)

# 直接计算并新增列
df['C'] = df['A'] + df['B']
df['D'] = df['A'] * df['B']

print(df)

三、小结

总结

  • apply 方法:适用于复杂的行处理逻辑。
  • iterrows 或 itertuples:适用于需要逐行处理的情况,但性能较低。
  • assign 方法:适用于需要新增多列的情况,且不会修改原始数据。
  • 向量化操作:适用于简单的计算逻辑,性能最高。

根据你的具体需求选择合适的方法。

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python数据分析系列】循环遍历DataFrame每一行并根据处理结果在该行新增列(案例+源码)

相关推荐

30天学会Python编程:16. Python常用标准库使用教程

16.1collections模块16.1.1高级数据结构16.1.2示例...

强烈推荐!Python 这个宝藏库 re 正则匹配

Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...

Python爬虫中正则表达式的用法,只讲如何应用,不讲原理

Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...

Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)

实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...

python爬虫教程之爬取当当网 Top 500 本五星好评书籍

我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...

深入理解re模块:Python中的正则表达式神器解析

在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...

如何使用正则表达式和 Python 匹配不以模式开头的字符串

需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...

先Mark后用!8分钟读懂 Python 性能优化

从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...

Python“三步”即可爬取,毋庸置疑

声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...

简单学Python——re库(正则表达式)2(split、findall、和sub)

1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...

Lavazza拉瓦萨再度牵手上海大师赛

阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...

ArkUI-X构建Android平台AAR及使用

本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...

Deepseek写歌详细教程(怎样用deepseek写歌功能)

以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...

“AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测

“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...

AI音乐制作神器揭秘!3款工具让你秒变高手

在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...

取消回复欢迎 发表评论: