CPU与GPU通用的新版本tensorflow在Anaconda中的配置
ztj100 2025-04-06 23:41 18 浏览 0 评论
本文介绍在Anaconda环境中,下载并配置Python中机器学习、深度学习常用的新版tensorflow库的方法。
在之前的两篇文章基于基于Python TensorFlow DNNRegressor的深度学习网络代码与Python TensorFlow Keras实现深度学习之深度神经网络回归代码中,我们介绍了利用Python中的tensorflow库,实现机器学习与深度学习的具体思路与代码实现;然而,当初并没有具体介绍tensorflow库的配置方法。因此,在这篇文章中,我们就介绍一下在Anaconda环境中,配置tensorflow库的详细方法;此外,这里需要注意,在较新版本的tensorflow库(版本大于1.5 ,但对于Windows用户而言,版本还不能高于2.10)中,已经同时支持CPU、GPU训练,不需要再区分是配置CPU版本的库还是GPU版本的库了。
首先,和Anaconda环境配置其他库一样,我们需要打开Anaconda Prompt软件;如下图所示。
随后,将会弹出如下所示的终端窗口。
接下来,我们即可开始tensorflow库的配置。由于我这里希望将tensorflow库配置到另一个已有的Anaconda虚拟环境中(这个虚拟环境的名称为py36tf,Python版本是3.6的),而不是当前这个默认的base环境,因此需要按照文章创建、使用、删除Anaconda的Python虚拟环境中提到的方法,首先进入这个名称为py36tf的虚拟环境中,如下图所示。
如果大家需要在默认的环境中配置tensorflow库,直接执行接下来的操作即可;如果大家希望新建一个环境来配置tensorflow库,那么参考上文提及的文章创建、使用、删除Anaconda的Python虚拟环境,创建并进入一个新的虚拟环境,再继续执行接下来的操作即可。
接下来,继续输入如下的代码,即可立即开始配置tensorflow库。
pip install --upgrade tensorflow
运行上述代码后,可以看到将立即开始tensorflow库的配置,如下图所示。其中,由于我这里Python版本是3.6的,而不是最新的Python版本,因此从下图可以看到tensorflow库版本也并不是最新的,而是2.6.2版本的——当然对我而言,这也就足够了。如果大家希望用最新版本的tensorflow库,需要注意同时使用最新的Python版本。
此外,这里有必要提一句——如果我用如下所示的代码进行tensorflow库的配置,配置得到的tensorflow库则是1.X版本的,而不是上面我们刚刚得到的是2.X版本,始终无法获取最新版本的tensorflow库;且之后无论怎么更新tensorflow库,都会出现报错信息。
conda install tensorflow
例如,在我的电脑上,如果运行上述代码,则结果如下图所示。
不知道具体是哪里的问题,从上图可以看到这种方法得到的tensorflow库始终是1.X版本(例如上图中显示tensorflow库就是1.2.1版本的)。所以,如果大家需要比较新版本的tensorflow库,还是建议用前面提到的pip install --upgrade tensorflow这句代码来实现。
让我们继续回到前述tensorflow库配置的工作中;稍等片刻,一般情况下即可完成tensorflow库的配置。这里需要注意,如果此时大家出现如下图所示的报错,则说明tensorflow库暂时还是没有配置成功。
这种情况是由于pip版本不够高导致的,因此我们需要通过如下所示的代码将pip升级。
python -m pip install --upgrade pip
输入上述代码,如下图所示。
运行这一代码后,我们重新运行一次pip install --upgrade tensorflow这句代码即可。可是在我这里,重新运行这句代码后,又出现了如下图所示的问题。
通过检查,发现网络代理的问题;将代理关闭后,即可解决问题(但是很奇怪,不知道为什么刚刚没有报这个错误,重新运行这句代码后才出现这样的错误)。最终,得到结果界面如下图所示。
接下来,我们可以输入如下的代码,从而检查tensorflow库是否已经配置成功。
python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
如下图所示,如果最终得到了一个tf.Tensor结果,即可说明我们的tensorflow库终于配置完毕了。
至此,大功告成。当然,到这里或许也不算完全成功——从上图可以看到,当前tensorflow库并没有进行GPU计算。如果大家的电脑上没有GPU,或者不需要用GPU加以计算,那就不用管这个问题,相当于已经完全成功了,后续直接开始用tensorflow库进行各类深度学习的应用即可;但是对于电脑上有GPU,并且也希望让GPU加入计算的用户而言,我们将在下一篇文章中介绍具体的配置方法。
欢迎关注:疯狂学习GIS
相关推荐
- 其实TensorFlow真的很水无非就这30篇熬夜练
-
好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...
- 交叉验证和超参数调整:如何优化你的机器学习模型
-
准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...
- 机器学习交叉验证全指南:原理、类型与实战技巧
-
机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...
- 深度学习中的类别激活热图可视化
-
作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...
- 超强,必会的机器学习评估指标
-
大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...
- 机器学习入门教程-第六课:监督学习与非监督学习
-
1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...
- Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置
-
你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...
- 神经网络与传统统计方法的简单对比
-
传统的统计方法如...
- 自回归滞后模型进行多变量时间序列预测
-
下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...
- 苹果AI策略:慢哲学——科技行业的“长期主义”试金石
-
苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...
- 时间序列预测全攻略,6大模型代码实操
-
如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)