Numpy学习指南(下篇)(numpy基础操作)
ztj100 2025-03-30 00:18 40 浏览 0 评论
一、Numpy 与其他库协作
1. Numpy 与 Pandas 协作
Pandas 是 Python 中用于数据处理和分析的强大库,它和 Numpy 经常一起使用。Pandas 的核心数据结构 DataFrame 可以和 Numpy 数组相互转换,从而结合两者的优势进行数据处理。
从 Numpy 数组创建 DataFrame
import numpy as np
import pandas as pd
# 创建一个 3 行 4 列的 Numpy 数组
np_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
# 将 Numpy 数组转换为 Pandas 的 DataFrame
df = pd.DataFrame(np_array, columns=['A', 'B', 'C', 'D'])
print(df)
从 DataFrame 提取 Numpy 数组
在对 DataFrame 进行一些数据处理后,可能需要将结果转换为 Numpy 数组进行高效的数值计算。
# 从 DataFrame 中提取 Numpy 数组
new_np_array = df.values
print(new_np_array)
2. Numpy 与 Matplotlib 协作
Matplotlib 是 Python 中常用的绘图库,Numpy 可以为其提供绘图所需的数据。
import numpy as np
import matplotlib.pyplot as plt
# 生成 x 轴数据,从 0 到 2π 均匀取 100 个点
x = np.linspace(0, 2 * np.pi, 100)
# 计算对应的 y 轴数据,正弦函数值
y = np.sin(x)
# 绘制正弦曲线
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.title('Sine Function')
plt.show()
二、实际案例分析
1. 简单统计计算
假设我们有一组学生的考试成绩数据,我们可以使用 Numpy 进行一些基本的统计分析,如计算平均分、最高分、最低分等。
import numpy as np
# 模拟一组学生的考试成绩
scores = np.array([85, 90, 78, 92, 65, 88, 72, 95])
# 计算平均分
average_score = np.mean(scores)
# 计算最高分
max_score = np.max(scores)
# 计算最低分
min_score = np.min(scores)
print(f"平均分: {average_score}")
print(f"最高分: {max_score}")
print(f"最低分: {min_score}")
2. 机器学习数据预处理 - 归一化处理
在机器学习中,数据归一化是一个常见的预处理步骤,它可以将数据缩放到一个特定的范围,有助于提高模型的性能。我们可以使用 Numpy 来实现简单的归一化处理。
import numpy as np
# 模拟一个数据集
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# 计算每列的最小值和最大值
min_vals = np.min(data, axis=0)
max_vals = np.max(data, axis=0)
# 进行归一化处理
normalized_data = (data - min_vals) / (max_vals - min_vals)
print(normalized_data)
三、性能优化与技巧
1. 向量化操作
在处理大规模数据时,尽量使用 Numpy 的向量化操作,避免使用 Python 的循环。向量化操作利用了 Numpy 底层的 C 语言实现,速度更快。
import numpy as np
import time
# 定义数组大小
n = 1000000
# 创建两个数组
a = np.random.rand(n)
b = np.random.rand(n)
# 使用循环进行加法操作
start_time = time.time()
c_loop = []
for i in range(n):
c_loop.append(a[i] + b[i])
end_time = time.time()
print(f"使用循环的时间: {end_time - start_time} 秒")
# 使用向量化操作进行加法
start_time = time.time()
c_vectorized = a + b
end_time = time.time()
print(f"使用向量化操作的时间: {end_time - start_time} 秒")
2. 内存管理
当处理大规模数据时,要注意内存的使用。可以使用 np.save() 和 np.load() 函数来保存和加载 Numpy 数组,避免一次性将大量数据加载到内存中。
import numpy as np
# 创建一个大型数组
large_array = np.random.rand(1000, 1000)
# 保存数组到文件
np.save('large_array.npy', large_array)
# 从文件中加载数组
loaded_array = np.load('large_array.npy')
通过以上内容的学习,你已经对 Numpy 有了较为全面的了解,从基础的数组操作到与其他库的协作,再到实际应用和性能优化。希望你能在实际项目中灵活运用这些知识,提高数据处理和分析的效率。
相关推荐
- 30天学会Python编程:16. Python常用标准库使用教程
-
16.1collections模块16.1.1高级数据结构16.1.2示例...
- 强烈推荐!Python 这个宝藏库 re 正则匹配
-
Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...
- Python爬虫中正则表达式的用法,只讲如何应用,不讲原理
-
Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...
- Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)
-
实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...
- python爬虫教程之爬取当当网 Top 500 本五星好评书籍
-
我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...
- 深入理解re模块:Python中的正则表达式神器解析
-
在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...
- 如何使用正则表达式和 Python 匹配不以模式开头的字符串
-
需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...
- 先Mark后用!8分钟读懂 Python 性能优化
-
从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...
- Python“三步”即可爬取,毋庸置疑
-
声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...
- 简单学Python——re库(正则表达式)2(split、findall、和sub)
-
1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...
- Lavazza拉瓦萨再度牵手上海大师赛
-
阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...
- ArkUI-X构建Android平台AAR及使用
-
本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...
- Deepseek写歌详细教程(怎样用deepseek写歌功能)
-
以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...
- “AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测
-
“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...
- AI音乐制作神器揭秘!3款工具让你秒变高手
-
在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 30天学会Python编程:16. Python常用标准库使用教程
- 强烈推荐!Python 这个宝藏库 re 正则匹配
- Python爬虫中正则表达式的用法,只讲如何应用,不讲原理
- Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)
- python爬虫教程之爬取当当网 Top 500 本五星好评书籍
- 深入理解re模块:Python中的正则表达式神器解析
- 如何使用正则表达式和 Python 匹配不以模式开头的字符串
- 先Mark后用!8分钟读懂 Python 性能优化
- Python“三步”即可爬取,毋庸置疑
- 简单学Python——re库(正则表达式)2(split、findall、和sub)
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)