百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

深度学习-Pytorch框架学习之数据处理篇

ztj100 2024-10-31 16:14 28 浏览 0 评论

前言

数据是深度学习的核心,大部分论文里都会提到data-driven这个词,也就是数据驱动的意思。基本的模型搭建完成后,如何处理数据,如何将数据送给网络,如何做数据增强等等,对于提高网络的性能都十分重要,本篇文章会简单讲述下数据处理过程,后续有时间会持续更新这方面的内容,互相学习,共勉!


数据集的均值和标准差

def compute_mean_and_std(dataset):
    # 输入为PyTorch的dataset,即数据集,输出为对应数据集均值和标准差
    
    # 均值
    mean_r = 0
    mean_g = 0
    mean_b = 0

    for img, _ in dataset:
        img = np.asarray(img) # 将 PIL Image 改变成numpy的数组类型
        mean_b += np.mean(img[:, :, 0])
        mean_g += np.mean(img[:, :, 1])
        mean_r += np.mean(img[:, :, 2])

    mean_b /= len(dataset)
    mean_g /= len(dataset)
    mean_r /= len(dataset)

    diff_r = 0
    diff_g = 0
    diff_b = 0

    N = 0

    for img, _ in dataset:
        img = np.asarray(img)

        diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))
        diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))
        diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))
        N += np.prod(img[:, :, 0].shape)

    std_b = np.sqrt(diff_b / N)
    std_g = np.sqrt(diff_g / N)
    std_r = np.sqrt(diff_r / N)

    mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)
    std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)
   
return mean, std

常用训练和验证数据预处理

ToTensor 会将 PIL.Image形状为 H×W×D,数值范围为 [0, 255] 的numpy数组转换形状为 D×H×W,数值范围为 [0.0, 1.0] 的 torch.Tensor

train_transform = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406)std=(0.229, 0.224, 0.225)),
 ])
 val_transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                     std=(0.229, 0.224, 0.225)),
])

视频数据

import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
video.release()


未完待续,持续更新!

相关推荐

Java的SPI机制详解

作者:京东物流杨苇苇1.SPI简介SPI(ServiceProvicerInterface)是Java语言提供的一种接口发现机制,用来实现接口和接口实现的解耦。简单来说,就是系统只需要定义接口规...

90%的Java程序员都忽视的内部类使用不当导致内存泄露!

...

一文读懂 Spring Boot 启动原理,开发效率飙升!

在当今的Java开发领域,SpringBoot无疑是最热门的框架之一。它以其“约定大于配置”的理念,让开发者能够快速搭建和启动应用,极大地提高了开发效率。但是,你是否真正了解Spring...

ServiceLoader

ServiceLoader是Java提供的一种服务发现机制(ServiceProviderInterface,SPI)...

深入探索 Spring Boot3 中的自定义扩展操作

在当今互联网软件开发领域,SpringBoot无疑是最受欢迎的框架之一。随着其版本迭代至SpringBoot3,它为开发者们带来了更多强大的功能和特性,其中自定义扩展操作更是为我们在项目开发中...

Spring Boot启动过程全面解析:从入门到精通

一、SpringBoot概述SpringBoot是一个基于Spring框架的快速开发脚手架,它通过"约定优于配置"的原则简化了Spring应用的初始搭建和开发过程。...

Spring Boot 3.x 自定义 Starter 详解

今天星期六,继续卷springboot3.x。在SpringBoot3.x中,自定义Starter是封装和共享通用功能、实现“约定优于配置”理念的强大机制。通过创建自己的Starte...

Spring Boot 的 3 种动态 Bean 注入技巧

在SpringBoot开发中,动态注入Bean是一种强大的技术,它允许我们根据特定条件或运行时环境灵活地创建和管理Bean。相比于传统的静态Bean定义,动态注入提供了更高的灵活性和可...

大佬用4000字带你彻底理解SpringBoot的运行原理!

SpringBoot的运行原理从前面创建的SpringBoot应用示例中可以看到,启动一个SpringBoot工程都是从SpringApplication.run()方法开始的。这个方法具体完成...

Springboot是如何实现自动配置的

SpringBoot的自动配置功能极大地简化了基于Spring的应用程序的配置过程。它能够根据类路径中的依赖和配置文件中的属性,自动配置应用程序。下面是SpringBoot实现自动配置的...

Spring Boot3.x 应用的生命周期深度解析

SpringBoot应用的生命周期可以清晰地划分为三个主要阶段:启动阶段(Startup)...

Springboot 启动流程及各类事件生命周期那点事

前言本文通过Springboot启动方法分析SpringApplication逻辑。从静态run方法执行到各个阶段发布不同事件完成整个应用启动。...

Spring框架基础知识-常用的接口1

BeanDefinition基本概念BeanDefinition是Spring框架中描述bean配置信息的核心接口,它包含了创建bean实例所需的所有元数据。...

一家拥有 158 年历史的公司遭遇索赔,被迫关闭!

...

Java 技术岗面试全景备战!从基础到架构的系统性通关攻略分享

Java技术岗的面试往往是一项多维度的能力检验。本文将会从核心知识点、项目经验到面试策略,为你梳理一份系统性的备战攻略!...

取消回复欢迎 发表评论: