百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

LeNet:一个简单的卷积神经网络PyTorch实现

ztj100 2024-10-31 16:14 17 浏览 0 评论

前两篇文章分别介绍了卷积层和池化层,卷积和池化是卷积神经网络必备的两大基础。本文我们将介绍一个早期用来识别手写数字图像的卷积神经网络:LeNet[1]。LeNet名字来源于论文的第一作者Yann LeCun。1989年,LeNet使用卷积神经网络和梯度下降法,使得手写数字识别达到当时领先水平。这个奠基性的工作第一次将卷积神经网络推上历史舞台,为世人所知。由于LeNet的出色表现,在很多ATM取款机上,LeNet被用来识别数字字符。

本文基于PyTorch和TensorFlow 2的代码已经放在了我的GitHub上:https://github.com/luweizheng/machine-learning-notes/tree/master/neural-network/cnn。

网络模型结构

LeNet的网络结构如下图所示。

LeNet分为卷积层块和全连接层块两个部分。

卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由卷积层加池化层两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×5的窗口,并在输出上使用Sigmoid激活函数。整个模型的输入是1维的黑白图像,图像尺寸为28×28。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。这是因为第二个卷积层比第一个卷积层的输入的高和宽要小,所以增加输出通道使两个卷积层的参数尺寸类似。卷积层块的两个最大池化层的窗口形状均为2×2,且步幅为2。由于池化窗口与步幅形状相同,池化窗口在输入上每次滑动所覆盖的区域互不重叠。

我们通过PyTorch的Sequential类来实现LeNet模型。

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        
        # 输入 1 * 28 * 28
        self.conv = nn.Sequential(
            # 卷积层1
            # 在输入基础上增加了padding,28 * 28 -> 32 * 32
            # 1 * 32 * 32 -> 6 * 28 * 28
            nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2), nn.Sigmoid(),
            # 6 * 28 * 28 -> 6 * 14 * 14
            nn.MaxPool2d(kernel_size=2, stride=2), # kernel_size, stride
            # 卷积层2
            # 6 * 14 * 14 -> 16 * 10 * 10 
            nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5), nn.Sigmoid(),
            # 16 * 10 * 10 -> 16 * 5 * 5
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.fc = nn.Sequential(
            # 全连接层1
            nn.Linear(in_features=16 * 5 * 5, out_features=120), nn.Sigmoid(),
            # 全连接层2
            nn.Linear(in_features=120, out_features=84), nn.Sigmoid(),
            nn.Linear(in_features=84, out_features=10)
        )

    def forward(self, img):
        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0], -1))
        return output
复制代码

我们有必要梳理一下模型各层的参数。输入形状为通道数为1的图像(1维黑白图像),尺寸为28×28,经过第一个5×5的卷积层,卷积时上下左右都使用了2个元素作为填充,输出形状为:(28 - 5 + 4 + 1) × (28 - 5 + 4 + 1) = 28 × 28。第一个卷积层输出共6个通道,输出形状为:6 × 28 × 28。最大池化层核大小2×2,步幅为2,高和宽都被折半,形状为:6 × 14 × 14。第二个卷积层的卷积核也为5 × 5,但是没有填充,所以输出形状为:(14 - 5 + 1) × (14 - 5 + 1) = 10 × 10。第二个卷积核的输出为16个通道,所以变成了 16 × 10 × 10。经过最大池化层后,高和宽折半,最终为:16 × 5 × 5。

卷积层块的输出形状为(batch_size, output_channels, height, width),在本例中是(batch_size, 16, 5, 5),其中,batch_size是可以调整大小的。当卷积层块的输出传入全连接层块时,全连接层块会将一个batch中每个样本变平(flatten)。原来是形状是:(通道数 × 高 × 宽),现在直接变成一个长向量,向量长度为通道数 × 高 × 宽。在本例中,展平后的向量长度为:16 × 5 × 5 = 400。全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

训练模型

基于上面的网络,我们开始训练模型。我们使用Fashion-MNIST作为训练数据集,很多框架,比如PyTorc提供了Fashion-MNIST数据读取的模块,我做了一个简单的封装:

def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
    """Use torchvision.datasets module to download the fashion mnist dataset and then load into memory."""
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())
    
    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
    if sys.platform.startswith('win'):
        num_workers = 0  
    else:
        num_workers = 4
    train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return train_iter, test_iter
复制代码

load_data_fashion_mnist()方法返回训练集和测试集。

在训练过程中,我们希望看到每一轮迭代的准确度,构造一个evaluate_accuracy方法,计算当前一轮迭代的准确度(模型预测值与真实值之间的误差大小):

def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        device = list(net.parameters())[0].device
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                # set the model to evaluation mode (disable dropout)
                net.eval() 
                # get the acc of this batch
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                # change back to train mode
                net.train() 

            n += y.shape[0]
    return acc_sum / n
复制代码

接着,我们可以构建一个train()方法,用来训练神经网络:

def try_gpu(i=0):
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def train(net, train_iter, test_iter, batch_size, optimizer, num_epochs, device=try_gpu()):
    net = net.to(device)
    print("training on", device)
    loss = torch.nn.CrossEntropyLoss()
    batch_count = 0
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        if epoch % 10 == 0:
            print(f'epoch {epoch + 1} : loss {train_l_sum / batch_count:.3f}, train acc {train_acc_sum / n:.3f}, test acc {test_acc:.3f}')
复制代码

在整个程序的主逻辑中,设置必要的参数,读入训练和测试数据并开始训练:

def main():

    batch_size = 256
    lr, num_epochs = 0.9, 100

    net = LeNet()
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    
    # load data
    train_iter, test_iter = load_data_fashion_mnist(batch_size=batch_size)
    # train
    train(net, train_iter, test_iter, batch_size, optimizer, num_epochs)
复制代码

小结

  1. LeNet是一个最简单的卷积神经网络,卷积神经网络包含卷积块部分和全连接层部分。
  2. 卷积块包括一个卷积层和一个池化层。

参考文献

  1. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
  2. http://d2l.ai/chapter_convolutional-neural-networks/lenet.html
  3. https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter05_CNN/5.5_lenet

相关推荐

如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL

阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...

Python数据分析:探索性分析

写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...

CSP-J/S冲奖第21天:插入排序

...

C++基础语法梳理:算法丨十大排序算法(二)

本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...

C 语言的标准库有哪些

C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...

[深度学习] ncnn安装和调用基础教程

1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...

用rust实现经典的冒泡排序和快速排序

1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...

ncnn+PPYOLOv2首次结合!全网最详细代码解读来了

编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...

C++特性使用建议

1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...

Qt4/5升级到Qt6吐血经验总结V202308

00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...

到底什么是C++11新特性,请看下文

C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...

掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!

C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...

经典算法——凸包算法

凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...

一起学习c++11——c++11中的新增的容器

c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...

C++ 编程中的一些最佳实践

1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...

取消回复欢迎 发表评论: