百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

PNASNet 渐进式神经架构搜索(渐进式测试)

ztj100 2024-10-31 16:13 20 浏览 0 评论

PNASNet(Progressive Neural Architecture Search)是一种自动设计神经网络模型的方法,通过渐进式神经架构搜索(Progressive Neural Architecture Search)来学习卷积神经网络(CNN)的结构。这种方法的核心思想是逐步构建网络结构,从简单(浅层)模型开始,逐步增加复杂性,并在此过程中剪除表现不佳的结构。

算法原理

PNASNet的搜索过程可以概括为以下几个步骤:

  1. 初始化: 开始时,搜索空间只包含最简单的单元(称为Cell),这些Cell可以看作是构建复杂网络结构的基本构件。
  2. 渐进式搜索: 在每一步搜索中,算法会增加新的层(称为Block),这些Block可以是新的Cell或者之前已经搜索到的Block的组合。通过这种方式,网络结构逐渐变得更加复杂。
  3. 模型训练与评估: 对于每一步搜索生成的所有可能的网络结构,使用训练数据集进行训练,并在验证数据集上评估它们的性能。
  4. Predictor的优化: 使用Sequential Model-based Optimization(SMBO)策略来训练一个Predictor,它是一个类似于RNN的结构,用于预测不同网络结构的性能。Predictor的输出是一个概率分布,表示每个网络结构在验证集上可能达到的准确率。
  5. 选择与迭代: 基于Predictor的预测,选择性能最好的K个网络结构进行进一步的训练和评估。这个过程会不断迭代,直到达到预定的网络复杂度或满足其他停止条件。


结论

PNASNet通过渐进式神经架构搜索,有效地探索了网络结构的搜索空间,并自动设计出了性能优异的神经网络模型。这种方法的优势在于它能够逐步构建网络结构,避免了一开始就搜索过于复杂的结构,从而提高了搜索的效率。同时,通过训练Predictor来指导搜索过程,PNASNet能够更加智能地选择有前景的网络结构进行训练和评估。这种方法在多个标准数据集上取得了与手工设计网络相媲美甚至更好的性能,展示了自动神经架构搜索的强大潜力。

PNASNet(Progressive Neural Architecture Search)是一种通过渐进式神经架构搜索自动设计的卷积神经网络模型。它使用了一种称为Sequential Model-based Optimization(SMBO)的策略来搜索网络结构,从简单模型开始,逐步增加复杂性,并在此过程中剪除表现不佳的结构。以下是PNASNet的一个简化的Python代码实现,使用PyTorch框架。

首先,你需要安装PyTorch和timm库,可以通过以下命令安装:

pip install torch torchvision
pip install timm

然后,你可以使用以下代码来加载预训练的PNASNet模型:

import timm

# 加载预训练的PNASNet模型
model = timm.create_model('pnasnet5large', pretrained=True)
model.eval()  # 设置为评估模式

如果你想从头开始训练PNASNet模型,你可以按照timm库提供的配方脚本进行操作。以下是一个基本的训练循环示例:

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms

# 数据预处理
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# 加载数据集
train_dataset = ImageFolder(root='path/to/train', transform=transform)
val_dataset = ImageFolder(root='path/to/val', transform=transform)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

# 训练循环
for epoch in range(num_epochs):
    for i, (inputs, labels) in enumerate(train_loader):
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item()}')

# 评估模型性能
def evaluate_model(model, dataloader):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in dataloader:
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print(f'Accuracy of the model on the dataset: {100 * correct / total} %')

# 使用验证集评估模型
evaluate_model(model, val_loader)

请注意,这只是一个简化的代码示例,实际的训练过程可能需要更复杂的设置,如学习率调度、正则化、数据增强等。此外,PNASNet的搜索过程和Predictor的训练在实际实现中可能需要额外的代码来处理。

在搜索PNASNet架构时,通常会使用一种称为Predictor的模型来预测不同网络结构的性能。这个Predictor是基于RNN的,它在搜索过程中被训练来预测验证集上的准确率。然而,为了简化,上述代码仅展示了如何加载预训练模型和进行基本的训练循环。搜索过程和Predictor的训练通常在PNASNet的原始论文和相关代码库中有更详细的描述。

相关推荐

再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)

在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...

python编程:如何使用python代码绘制出哪些常见的机器学习图像?

专栏推荐...

python创建分类器小结(pytorch分类数据集创建)

简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...

matplotlib——绘制散点图(matplotlib散点图颜色和图例)

绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...

python实现实时绘制数据(python如何绘制)

方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...

简单学Python——matplotlib库3——绘制散点图

前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...

数据分析-相关性分析可视化(相关性分析数据处理)

前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...

免费Python机器学习课程一:线性回归算法

学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...

用Python进行机器学习(2)之逻辑回归

前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...

【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂

一、拟合和回归的区别拟合...

推荐2个十分好用的pandas数据探索分析神器

作者:俊欣来源:关于数据分析与可视化...

向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...

用Python进行机器学习(11)-主成分分析PCA

我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...

神经网络基础深度解析:从感知机到反向传播

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...

Python实现基于机器学习的RFM模型

CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...

取消回复欢迎 发表评论: