PyTorch 项目实战开发教程:构建动态手势识别模型
ztj100 2024-10-31 16:13 17 浏览 0 评论
在本教程中,我们将使用 PyTorch 构建一个动态手势识别模型。该模型能够通过视频流识别人的手势,并将其分类为不同的手势类别,如向上、向下、向左、向右等。我们将使用卷积神经网络(Convolutional Neural Network,CNN)来处理视频帧数据,并使用循环神经网络(Recurrent Neural Network,RNN)来捕捉时间序列信息。
步骤 1: 数据准备
首先,我们需要准备用于训练模型的数据集。你可以使用公开可用的手势数据集,如UCI的Hand Gesture Recognition Database (HGDB)。这个数据集包含了不同手势的视频序列。每个视频序列包含多帧图像,其中手势的动作是连续的。
你可以将数据集下载并解压缩到你的项目目录中。接下来,我们将读取数据并将其准备成适合模型训练的格式。
import os
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
class GestureDataset(Dataset):
def __init__(self, data_dir, transform=None):
self.data_dir = data_dir
self.transform = transform
self.classes = os.listdir(data_dir)
def __len__(self):
return sum(len(files) for _, _, files in os.walk(self.data_dir))
def __getitem__(self, idx):
gesture_class = np.random.choice(self.classes)
gesture_dir = os.path.join(self.data_dir, gesture_class)
gesture_files = os.listdir(gesture_dir)
gesture_file = np.random.choice(gesture_files)
gesture_path = os.path.join(gesture_dir, gesture_file)
image = Image.open(gesture_path).convert('RGB')
label = self.classes.index(gesture_class)
if self.transform:
image = self.transform(image)
return image, label
# 定义数据增强和预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 创建训练数据集
train_dataset = GestureDataset(data_dir='gesture_data/train', transform=transform)
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
在这个代码片段中,我们创建了一个自定义的GestureDataset类来加载手势数据集。我们还使用了torchvision.transforms模块来定义了一系列图像预处理和数据增强操作,如调整大小、转换为张量和标准化。最后,我们创建了一个DataLoader来加载数据集,这将在训练过程中用于批量读取数据。
现在我们已经准备好了数据集,接下来我们将构建模型。
步骤 2: 构建模型
我们将使用一个预训练的卷积神经网络模型作为特征提取器,并在其之上添加几层全连接层来进行分类。在这里,我们选择使用ResNet18作为我们的基础模型。
import torch.nn as nn
import torchvision.models as models
class GestureRecognitionModel(nn.Module):
def __init__(self, num_classes):
super(GestureRecognitionModel, self).__init__()
self.resnet = models.resnet18(pretrained=True)
self.resnet.fc = nn.Linear(512, num_classes)
def forward(self, x):
return self.resnet(x)
# 实例化模型
num_classes = len(train_dataset.classes)
model = GestureRecognitionModel(num_classes)
在这个代码片段中,我们首先定义了一个名为GestureRecognitionModel的子类,它继承自nn.Module类。然后,我们使用torchvision.models模块加载了预训练的ResNet18模型,并将其全连接层替换为一个新的线性层,其输出大小为我们数据集中的类别数。
步骤 3: 训练模型
接下来,我们将使用准备好的数据集和模型来训练我们的手势识别模型。
import torch.optim as optim
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9: # 每10个mini-batches输出一次损失
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 10))
running_loss = 0.0
print('Finished Training')
在这个训练过程中,我们遍历数据加载器中的所有批次,并将数据传递给模型进行前向传播。然后,我们计算损失并进行反向传播优化模型参数。最后,我们输出每个epoch的平均损失。完成所有epoch的训练后,我们的模型就训练好了。
步骤 4: 模型评估
最后,我们需要对模型进行评估以了解其在测试数据上的表现。
# 创建测试数据集
test_dataset = GestureDataset(data_dir='gesture_data/test', transform=transform)
# 创建测试数据加载器
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# 在测试集上进行预测
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
inputs, labels = data
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (
100 * correct / total))
在这个评估过程中,我们遍历了测试数据加载器中的所有批次,并使用模型进行前向传播以获取预测结果。然后,我们计算了模型在测试集上的准确率。
这就是构建自动驾驶车辆行为识别模型的完整过程。通过这个模型,我们可以识别车辆的不同行为,从而实现更智能的自动驾驶系统。
相关推荐
- 如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL
-
阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...
- Python数据分析:探索性分析
-
写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...
- C++基础语法梳理:算法丨十大排序算法(二)
-
本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...
- C 语言的标准库有哪些
-
C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...
- [深度学习] ncnn安装和调用基础教程
-
1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...
- 用rust实现经典的冒泡排序和快速排序
-
1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...
- ncnn+PPYOLOv2首次结合!全网最详细代码解读来了
-
编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...
- C++特性使用建议
-
1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...
- Qt4/5升级到Qt6吐血经验总结V202308
-
00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...
- 到底什么是C++11新特性,请看下文
-
C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...
- 掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!
-
C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...
- 经典算法——凸包算法
-
凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...
- 一起学习c++11——c++11中的新增的容器
-
c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...
- C++ 编程中的一些最佳实践
-
1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)