PyTorch 图像:04.使用 PyTorch 进行 Neural-Transfer
ztj100 2024-10-31 16:13 14 浏览 0 评论
1.简介
本教程主要讲解如何实现由 Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的Neural-Style 算法。Neural-Style 或者叫 Neural-Transfer,可以让你使用一种新的风格将指定的图片进行重构。 这个算法使用三张图片,一张输入图片,一张内容图片和一张风格图片,并将输入的图片变得与内容图片相似,且拥有风格图片的优美风格。
2.基本原理
我们定义两个间距,一个用于内容D_C,另一个用于风格D_S。D_C测量两张图片内容的不同,而D_S用来测量两张图片风格的不同。 然后,我们输入第三张图片,并改变这张图片,使其与内容图片的内容间距和风格图片的风格间距最小化。 现在,我们可以导入必要的包,开始图像风格转换。
3.导包并选择设备
下面是一张实现图像风格转换所需包的汇总。
torch, torch.nn, numpy:使用PyTorch进行风格转换必不可少的包
torch.optim:高效的梯度下降
PIL, PIL.Image, matplotlib.pyplot:加载和展示图片
torchvision.transforms:将PIL图片转换成张量
torchvision.models:训练或加载预训练模型
copy:对模型进行深度拷贝;系统包
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision.models as models
import copy
下一步,我们选择用哪一个设备来运行神经网络,导入内容和风格图片。在大量图片上运行图像风格算法需要很长时间,在GPU上运行 可以加速。我们可以使用torch.cuda.is_available()来判断是否有可用的GPU。下一步,我们在整个教程中使用torch.device,同时 torch.device .to(device)方法也被用来将张量或者模型移动到指定设备。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
4.加载图片
现在我们将导入风格和内容图片。原始的PIL图片的值介于0到255之间,但是当转换成torch张量时,它们的值被转换成0到1之间。图片也 需要被重设成相同的维度。一个重要的细节是,注意torch库中的神经网络用来训练的张量的值为0到1之间。如果你尝试将0到255的张量图 片加载到神经网络,然后激活的特征映射将不能侦测到目标内容和风格。然而,Caffe库中的预训练网络用来训练的张量值为0到255之间的图片。
注意:
这是一个下载本教程需要用到的图片的链接:picasso.jpg 和 dancing.jpg。下载这两张图片并且将它们添加到你当前工作目录中的images文件夹。
# 所需的输出图像大小
imsize = 512 if torch.cuda.is_available() else 128 # use small size if no gpu
loader = transforms.Compose([
transforms.Resize(imsize), # scale imported image
transforms.ToTensor()]) # transform it into a torch tensor
def image_loader(image_name):
image = Image.open(image_name)
# fake batch dimension required to fit network's input dimensions
image = loader(image).unsqueeze(0)
return image.to(device, torch.float)
style_img = image_loader("./data/images/neural-style/picasso.jpg")
content_img = image_loader("./data/images/neural-style/dancing.jpg")
assert style_img.size() == content_img.size(), \
"we need to import style and content images of the same size"
现在,让我们创建一个方法,通过重新将图片转换成PIL格式来展示,并使用plt.imshow展示它的拷贝。我们将尝试展示内容和风格图片来确保它们被正确的导入。
unloader = transforms.ToPILImage() # reconvert into PIL image
plt.ion()
def imshow(tensor, title=None):
image = tensor.cpu().clone() # we clone the tensor to not do changes on it
image = image.squeeze(0) # remove the fake batch dimension
image = unloader(image)
plt.imshow(image)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
plt.figure()
imshow(style_img, title='Style Image')
plt.figure()
imshow(content_img, title='Content Image')
5.损失函数
5.1 内容损失
内容损失是一个表示一层内容间距的加权版本。这个方法使用网络中的L层的特征映射F_XL,该网络处理输入X并返回在图片X和内容图片 C之间的加权内容间距W_CL*D_C^L(X,C)。该方法必须知道内容图片(F_CL)的特征映射来计算内容间距。我们使用一个以F_CL作为 构造参数输入的 torch 模型来实现这个方法。间距||F_XL-F_CL||^2是两个特征映射集合之间的平均方差,可以使用nn.MSELoss来计算。
我们将直接添加这个内容损失模型到被用来计算内容间距的卷积层之后。这样每一次输入图片到网络中时,内容损失都会在目标层被计算。 而且因为自动求导,所有的梯度都会被计算。现在,为了使内容损失层透明化,我们必须定义一个forward方法来计算内容损失,同时 返回该层的输入。计算的损失作为模型的参数被保存。
class ContentLoss(nn.Module):
def __init__(self, target,):
super(ContentLoss, self).__init__()
# 我们从用于动态计算梯度的树中“分离”目标内容:
# 这是一个声明的值,而不是变量。
# 否则标准的正向方法将引发错误。
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
注意:
重要细节:尽管这个模型的名称被命名为 ContentLoss, 它不是一个真实的PyTorch损失方法。如果你想要定义你的内容损失为PyTorch Loss方法,你必须创建一个PyTorch自动求导方法来手动的在backward方法中重计算/实现梯度.
5.2 风格损失
风格损失模型与内容损失模型的实现方法类似。它要作为一个网络中的透明层,来计算相应层的风格损失。为了计算风格损失,我们需要 计算 Gram 矩阵G_XL。Gram 矩阵是将给定矩阵和它的转置矩阵的乘积。在这个应用中,给定的矩阵是L层特征映射F_XL的重塑版本。 F_XL被重塑成 F?_XL,一个 KxN的矩阵,其中K是L层特征映射的数量,N是任何向量化特征映射F_XL^K的长度。例如,第一行的F?_XL 与第一个向量化的F_XL^1。
最后,Gram 矩阵必须通过将每一个元素除以矩阵中所有元素的数量进行标准化。标准化是为了消除拥有很大的N维度F?_XL在Gram矩阵 中产生的很大的值。这些很大的值将在梯度下降的时候,对第一层(在池化层之前)产生很大的影响。风格特征往往在网络中更深的层, 所以标准化步骤是很重要的。
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# 特征映射 b=number
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# 我们通过除以每个特征映射中的元素数来“标准化”gram矩阵的值.
return G.div(a * b * c * d)
现在风格损失模型看起来和内容损失模型很像。风格间距也用G_XL和G_SL之间的均方差来计算。
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
6.导入模型
现在我们需要导入预训练的神经网络。我们将使用19层的 VGG 网络,就像论文中使用的一样。
PyTorch 的 VGG 模型实现被分为了两个字 Sequential 模型:features(包含卷积层和池化层)和classifier(包含全连接层)。 我们将使用features模型,因为我们需要每一层卷积层的输出来计算内容和风格损失。在训练的时候有些层会有和评估不一样的行为, 所以我们必须用.eval()将网络设置成评估模式。
cnn = models.vgg19(pretrained=True).features.to(device).eval()
此外,VGG网络通过使用mean=[0.485, 0.456, 0.406]和std=[0.229, 0.224, 0.225]参数来标准化图片的每一个通道,并在图片上进行训练。 因此,我们将在把图片输入神经网络之前,先使用这些参数对图片进行标准化。
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
# 创建一个模块来规范化输入图像
# 这样我们就可以轻松地将它放入nn.Sequential中
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
一个 Sequential 模型包含一个顺序排列的子模型序列。例如,vff19.features包含一个以正确的深度顺序排列的序列(Conv2d, ReLU, MaxPool2d, Conv2d, ReLU…)。我们需要将我们自己的内容损失和风格损失层在感知到卷积层之后立即添加进去。因此,我们必须创建 一个新的Sequential模型,并正确的插入内容损失和风格损失模型。
# 期望的深度层来计算样式/内容损失:
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers=content_layers_default,
style_layers=style_layers_default):
cnn = copy.deepcopy(cnn)
# 规范化模块
normalization = Normalization(normalization_mean, normalization_std).to(device)
# 只是为了拥有可迭代的访问权限或列出内容/系统损失
content_losses = []
style_losses = []
# 假设cnn是一个`nn.Sequential`,
# 所以我们创建一个新的`nn.Sequential`来放入应该按顺序激活的模块
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# 对于我们在下面插入的`ContentLoss`和`StyleLoss`,
# 本地版本不能很好地发挥作用。所以我们在这里替换不合适的
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# 加入内容损失:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# 加入风格损失:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
# 现在我们在最后的内容和风格损失之后剪掉了图层
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
下一步,我们选择输入图片。你可以使用内容图片的副本或者白噪声。
input_img = content_img.clone()
# 如果您想使用白噪声而取消注释以下行:
# input_img = torch.randn(content_img.data.size(), device=device)
# 将原始输入图像添加到图中:
plt.figure()
imshow(input_img, title='Input Image')
7.梯度下降
和算法的作者 Leon Gatys 的在这里 建议的一样,我们将使用 L-BFGS 算法来进行我们的梯度下降。与训练一般网络不同,我们训练输入图片是为了最小化内容/风格损失。 我们要创建一个 PyTorch 的 L-BFGS 优化器optim.LBFGS,并传入我们的图片到其中,作为张量去优化。
def get_input_optimizer(input_img):
# 此行显示输入是需要渐变的参数
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
最后,我们必须定义一个方法来展示图像风格转换。对于每一次的网络迭代,都将更新过的输入传入其中并计算损失。我们要运行每一个 损失模型的backward方法来计算它们的梯度。优化器需要一个“关闭”方法,它重新估计模型并且返回损失。
我们还有最后一个问题要解决。神经网络可能会尝试使张量图片的值超过0到1之间来优化输入。我们可以通过在每次网络运行的时候将输 入的值矫正到0到1之间来解决这个问题。
def run_style_transfer(cnn, normalization_mean, normalization_std,
content_img, style_img, input_img, num_steps=300,
style_weight=1000000, content_weight=1):
"""Run the style transfer."""
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(cnn,
normalization_mean, normalization_std, style_img, content_img)
optimizer = get_input_optimizer(input_img)
print('Optimizing..')
run = [0]
while run[0] <= num_steps:
def closure():
# 更正更新的输入图像的值
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print()
return style_score + content_score
optimizer.step(closure)
# 最后的修正......
input_img.data.clamp_(0, 1)
return input_img
最后,我们可以运行这个算法。
output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std,
content_img, style_img, input_img)
plt.figure()
imshow(output, title='Output Image')
# sphinx_gallery_thumbnail_number = 4
plt.ioff()
plt.show()
输出结果
Building the style transfer model..
Optimizing..
run [50]:
Style Loss : 4.169304 Content Loss: 4.235329
run [100]:
Style Loss : 1.145476 Content Loss: 3.039176
run [150]:
Style Loss : 0.716769 Content Loss: 2.663749
run [200]:
Style Loss : 0.476047 Content Loss: 2.500893
run [250]:
Style Loss : 0.347092 Content Loss: 2.410895
run [300]:
Style Loss : 0.263698 Content Loss: 2.358449
相关推荐
- 如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL
-
阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...
- Python数据分析:探索性分析
-
写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...
- C++基础语法梳理:算法丨十大排序算法(二)
-
本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...
- C 语言的标准库有哪些
-
C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...
- [深度学习] ncnn安装和调用基础教程
-
1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...
- 用rust实现经典的冒泡排序和快速排序
-
1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...
- ncnn+PPYOLOv2首次结合!全网最详细代码解读来了
-
编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...
- C++特性使用建议
-
1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...
- Qt4/5升级到Qt6吐血经验总结V202308
-
00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...
- 到底什么是C++11新特性,请看下文
-
C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...
- 掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!
-
C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...
- 经典算法——凸包算法
-
凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...
- 一起学习c++11——c++11中的新增的容器
-
c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...
- C++ 编程中的一些最佳实践
-
1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)