【PyTorch 卷积】实战自定义的图片归类
ztj100 2024-10-31 16:13 38 浏览 0 评论
前言
卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一,它通过卷积层、池化层、全连接层等结构,可以有效地处理如时间序列和图片数据等。关于卷积的概念网络上也比较多,这里就不一一描述了。实战为主当然要从实际问题出发,用代码的方式加深印象。在写代码前,我先说一下为什么我要写这篇文章?
之前我也用 Tensorflow.js 跟着别人试过图片分类,虽然结果是有了,但是对代码的理解和印象并不深刻。后来由于工作业务原因才接触 PyTorch,发现这个框架更好上手,整一圈后就想用这个把之前用得图片也实现一下分类。开始也是看文章实现,但是网上大部分都是用 MNIST 数据集实现的手写字识别,而业务中有时就是一些指定的不规则小众图片识别,所以下面就简单实现一个自定义的图片集归类。
流程
- 根据自己的定义,收集图片并归类
- 读取图片数据和归类标签,保存数据集
- 固定图片大小 (会变形),归一化转张量
- 定义超参数,损失函数和优化器等
- 炼丹,重复查看损失值准确率等指标
- 保存模型参数,加载测试图片分类效果
环境
- Python 3.8
- Torch 1.9.0
- Pillow 10.0
- Torchvision
- Numpy
- Pandas
- Matplotlib
编码
写代码前已经把需要的图片做好了分类,上面的依赖包也已经安装完毕。由于只是演示这里没有用预训练模型(ResNet、VGG),因为训练时要用的是 Tensor,所以需要先读取文件夹内的图片先转化为 PIL 的对象数据或 Numpy 数据,然后可以对图片进行调整,最后全都转成 Tensor(也可以跳过 PIL 直接转张量)。这里需要注意的是对灰彩图片通道,不同尺寸图的统一处理,就是灰色图的单通道要通过复制的方式创建三个通道,所以图片设置一样的像素大小。因为在卷积网络中,输入的通道数和输入大小要一致,不然可能在训练中报错。
图片数据生成
这里就是遍历各个分类文件夹的图片转换为对象信息数据,和提取所有分类,分别保存到指定位置,当然也可以在这里划分训练数据,校验数据,测试数据,需要的可以扩展这里就跳过了。
# -*- coding: utf-8 -*-
import os
import pickle as pkl
import pandas as pd
from PIL import Image
all_cate = []
data_set = []
directory = "./data/train"
for index, data in enumerate(os.walk(directory)):
root, dirs, files = data
if index == 0:
all_cate += dirs
else:
sorted(all_cate)
root_names = root.split("\\")
dir_name = root_names[-1]
for img in files:
img_path = root + "\\" + img
img_np = Image.open(img_path)
dict = {}
dict['img_np'] = img_np
dict['label'] = all_cate.index(dir_name) + 1
data_set.append(dict)
# 字典转DataFrame
df = pd.DataFrame(data_set)
pkl.dump(df, open('data/train_dataset.p', 'wb'))
open("data/all_cate.txt", encoding="utf-8", mode="w+").write("\n".join(all_cate))
print("存档数据成功~")
批量数据集标准化
这里是读取序列化的图片信息,对所有图片统一像素 (一般配置电脑最好在 100px 以内,不然会很卡) 并标准归一化后,转换为 Tensor。然后判断图片通道数,如果是灰色图,可以复制张量三次以创建三个通道,最后通过 torch 的 DataLoader 在训练前完成数据集的加载。
# -*- coding: utf-8 -*-
import torch
from torchvision import transforms
import pickle as pkl
from torch.utils.data import Dataset
class DataSet(Dataset):
def __init__(self, pkl_file):
df = pkl.load(open(pkl_file, 'rb'))
self.dataFrame = df
def __len__(self):
return len(self.dataFrame)
def __getitem__(self, item):
img_np = self.dataFrame.iloc[item, 0]
label = self.dataFrame.iloc[item, 1]
transform = transforms.Compose([
transforms.Resize((100, 100)), # 根据需要调整图像大小
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]) # 标准归一化, p1.均值 p2.方差
])
image_tensor = transform(img_np)
if image_tensor.shape[0] == 1:
image_tensor = image_tensor.repeat(3, 1, 1)
res = {
'img_tensor': image_tensor,
'label': torch.LongTensor([label-1]) # 需要实际的索引值
}
return res
神经网络模型
这里创建的是卷积神经网络,接收 3 通道,第一层卷积层卷积核 3x3,输出 25 维张量,通过批标准化(BatchNorm2d)进行归一化处理,最后通过 ReLU 激活函数进行非线性变换。第一层池化使用 2x2 的最大池化操作对卷积后的特征图进行下采样。第二层也是卷积和对应的池化,最后是全连接层。将经过池化的特征图展平,然后通过一个有 1024 个神经元的全连接层,再通过 ReLU 激活函数进行非线性变换。之后是一个有 128 个神经元的全连接层,最后再通过 ReLU 激活函数进行非线性变换,输出 5 个神经元代表分类的概率分布。
# -*- coding: utf-8 -*-
import torch.nn as nn
import torch
import math
import torch.functional as F
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 25, kernel_size=3),
nn.BatchNorm2d(25),
nn.ReLU(inplace=True)
)
self.layer2 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer3 = nn.Sequential(
nn.Conv2d(25, 50, kernel_size=3),
nn.BatchNorm2d(50),
nn.ReLU(inplace=True)
)
self.layer4 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc = nn.Sequential(
nn.Linear(50 * 23 * 23, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, 128),
nn.ReLU(inplace=True),
nn.Linear(128, 5)
)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
开始训练
# -*- coding:utf-8 -*-
import torch
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from data_set import DataSet
from torch.autograd import Variable
from utils import *
import cnn
import torch.nn as nn
import numpy as np
import torch.optim as optim
# 定义超参数
batch_size = 1
learning_rate = 0.02
num_epoches = 1
# 加载图片tensor训练集
tain_dataset = DataSet("data/train_dataset.p")
train_loader = DataLoader(tain_dataset, batch_size=batch_size, shuffle=True)
model = cnn.CNN()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
# 训练模型
train_loses = []
records = []
for i in range(num_epoches):
for ii, data in enumerate(train_loader):
img = data['img_tensor']
label = data['label'].view(-1)
optimizer.zero_grad()
out = model(img)
loss = criterion(out, label)
train_loses.append(loss.data.item())
loss.backward()
optimizer.step()
if ii % 50 == 0:
print('epoch: {}, loop: {}, loss: {:.4}'.format(i, ii, np.mean(train_loses)))
records.append([np.mean(train_loses)])
# 绘制模型的损失,准确率走势图
train_loss = [data[0] for data in records]
plt.plot(train_loss, label = 'Train Loss')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.legend()
plt.show()
# 模型评估(略)
# model.eval()
# 模型保存
torch.save(model, 'params/cnn_imgs_02.pkl')
模型检测
训练完成保存参数到本地,下面就是将加载进的参数来测试其他图片的分类效果,同样的也是将指定图片和训练时一样的转换操作,最后将预测结果取出最大分布索引值,根据索引就可以匹配出分类名称了。另一个是工具函数,将 tensor 格式的图片在预测结果后显示在 pyplot 中。
# -*- coding:utf-8 -*-
import torch
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from data_set import DataSet
from utils import *
import torchvision
from PIL import Image
from torchvision import transforms
import cnn
def imshow(img):
img = img / 2 + 0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
model = torch.load("params/cnn_imgs_02.pkl")
img_path= "imgs/05.jpg"
img_np = Image.open(img_path)
transform = transforms.Compose([
transforms.Resize((100, 100)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image_tensor = transform(img_np)
# 如果是灰度图片
if image_tensor.shape[0] == 1:
image_tensor = image_tensor.repeat(3, 1, 1)
image_tensor = image_tensor.view(-1, 3, 100, 100)
predict = model(image_tensor)
indices = torch.max(predict, 1)[1].item()
all_cate = []
for line in open("data/all_cate.txt", encoding="utf-8", mode="r"):
all_cate.append(line.strip())
cate_name = ""
try:
cate_name = all_cate[indices]
except ValueError:
cate_name = "未知"
print("识别结果是:", cate_name)
# imshow(torchvision.utils.make_grid(image_tensor))
# 原图显示
img_np.show()
exit()
相关推荐
- 离谱!写了5年Vue,还不会自动化测试?
-
前言大家好,我是倔强青铜三。是一名热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新,欢迎关注我,微信公众号:倔强青铜三。Playwright是一个功能强大的端到...
- package.json 与 package-lock.json 的关系
-
模块化开发在前端越来越流行,使用node和npm可以很方便的下载管理项目所需的依赖模块。package.json用来描述项目及项目所依赖的模块信息。那package-lock.json和...
- Github 标星35k 的 SpringBoot整合acvtiviti开源分享,看完献上膝盖
-
前言activiti是目前比较流行的工作流框架,但是activiti学起来还是费劲,还是有点难度的,如何整合在线编辑器,如何和业务表单绑定,如何和系统权限绑定,这些问题都是要考虑到的,不是说纯粹的把a...
- Vue3 + TypeScript 前端研发模板仓库
-
我们把这个Vue3+TypeScript前端研发模板仓库的初始化脚本一次性补全到可直接运行的状态,包括:完整的目录结构所有配置文件研发规范文档示例功能模块(ExampleFeature)...
- Vue 2迁移Vue 3:从响应式到性能优化
-
小伙伴们注意啦!Vue2已经在2023年底正式停止维护,再不升级就要面临安全漏洞没人管的风险啦!而且Vue3带来的性能提升可不是一点点——渲染速度快40%,内存占用少一半,更新速度直接翻倍!还在...
- VUE学习笔记:声明式渲染详解,对比WEB与VUE
-
声明式渲染是指使用简洁的模板语法,声明式的方式将数据渲染进DOM系统。声明式是相对于编程式而言,声明式是面向对象的,告诉框架做什么,具体操作由框架完成。编程式是面向过程思想,需要手动编写代码完成具...
- 苏州web前端培训班, 苏州哪里有web前端工程师培训
-
前端+HTML5德学习内容:第一阶段:前端页面重构:PC端网站布局、HTML5+CSS3基础项目、WebAPP页面布局;第二阶段:高级程序设计:原生交互功能开发、面向对象开发与ES5/ES6、工具库...
- 跟我一起开发微信小程序——扩展组件的代码提示补全
-
用户自定义代码块步骤:1.HBuilderX中工具栏:工具-代码块设置-vue代码块2.通过“1”步骤打开设置文件...
- JimuReport 积木报表 v1.9.3发布,免费可视化报表
-
项目介绍积木报表JimuReport,是一款免费的数据可视化报表,含报表、大屏和仪表盘,像搭建积木一样完全在线设计!功能涵盖:数据报表、打印设计、图表报表、门户设计、大屏设计等!...
- 软开企服开源的无忧企业文档(V2.1.3)产品说明书
-
目录1....
- 一款面向 AI 的下一代富文本编辑器,已开源
-
简介AiEditor是一个面向AI的下一代富文本编辑器。开箱即用、支持所有前端框架、支持Markdown书写模式什么是AiEditor?AiEditor是一个面向AI的下一代富文本编辑...
- 玩转Markdown(2)——抽象语法树的提取与操纵
-
上一篇玩转Markdown——数据的分离存储与组件的原生渲染发布,转眼已经鸽了大半年了。最近在操纵mdast生成md文件的时候,心血来潮,把玩转Markdown(2)给补上了。...
- DeepseekR1+ollama+dify1.0.0搭建企业/个人知识库(入门避坑版)
-
找了网上的视频和相关文档看了之后,可能由于版本不对或文档格式不对,很容易走弯路,看完这一章,可以让你少踩三天的坑。步骤和注意事项我一一列出来:1,前提条件是在你的电脑上已配置好ollama,dify1...
- 升级JDK17的理由,核心是降低GC时间
-
升级前后对比升级方法...
- 一个vsCode格式化插件_vscode格式化插件缩进量
-
ESlint...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
【VueTorrent】一款吊炸天的qBittorrent主题,人人都可用
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)