百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

究极清晰!一文带你看懂OpenCV中的坐标系与图像通道顺序

ztj100 2024-10-30 05:12 46 浏览 0 评论

OpenCV中的坐标系

为了更好的展示 OpenCV 中的坐标系以及如何访问各个像素,我们首先观察以下低分辨率图像:

这个图片的尺寸是 32×41 像素,也就是说,这个图像有 1312 个像素。为了进一步说明,我们可以在每个轴上添加像素计数,如下图所示:

现在,我们来看看 (x,y) 形式的像素索引。请注意,像素索引起始值为零,这意味着左上角位于 (0,0)而不是 (1,1)。下面的图像,索引了 4 个单独的像素,图像的左上角是原点的坐标:

单个像素的信息可以从图像中提取,方法与 Python 中引用数组的单个元素相同。

OpenCV中的通道顺序

在 OpenCV 使用中,使用的颜色通道顺序为 BGR 颜色格式而不是 RGB 格式。可以在下图中看到三个通道的顺序:

BGR 图像的像素结构如下图所示,作为演示,图示详细说明了如何访问pixel(y=n, x=1):

Tips:OpenCV 的最初开发人员选择了 BGR 颜色格式(而不是 RGB 格式),是因为当时 BGR 颜色格式在软件供应商和相机制造商中非常流行,因此选择 BGR 是出于历史原因。

此外,也有其他 Python 包使用的是 RGB 颜色格式(例如,Matplotlib 使用 RGB 颜色格式,Matplotlib{跳转提示-稀土掘金} 是最流行的 2D Python 绘图库,提供多种绘图方法,可以查看 Python-Matplotlib 可视化(掘金)获取更多详细信息)。因此,我们需要知道如何将图像从一种格式转换为另一种格式。

当我们掌握了将图像从一种格式转换为另一种格式的方法后,就可以选择使用 OpenCV 进行图像处理,同时利用 Matplotlib 包提供的函数来显示图像,接下来,让我们看看如何处理两个库采用的不同颜色格式。 首先,我们使用 cv2.imread() 函数加载图像:

import cv2
img_OpenCV = cv2.imread('sigonghuiye.jpeg')

图像存储在 img_OpenCV 变量中,因为 cv2.imread() 函数以 BGR 顺序加载图像。然后,我们使用 cv2.split() 函数将加载的图像分成三个通道 (b, g, r) 。这个函数的参数就是我们要分割的图像:

b, g, r = cv2.split(img_OpenCV)

下一步是合并通道(以便根据通道提供的信息构建新图像),但合并时顺序与原图像不同。我们更改 b 和 r 通道的顺序以遵循 RGB 格式,即我们所需要的 Matplotlib 格式:

img_matplotlib = cv2.merge([r, g, b])

此时,我们有两个图像 (img_OpenCV 和 img_matplotlib),接下来,我们将分别使用 OpenCV 和 Matplotlib 绘制她们,以便我们可以对比结果。首先,我们将用 Matplotlib 显示这两个图像。

为了在同一个窗口中使用 Matplotlib 显示两个图像,我们将使用 subplot,它将多个图像放置在同一个窗口中。可以在 subplot 中使用三个参数,例如 subplot(m,n,p),此时,子图处理 m×nm \times nm×n 网格中的图,其中 mmm 确定行数,nnn 确定列数,而 ppp 确定要在网格中放置图的位置。要使用 Matplotlib 显示图像,需要使用 imshow 函数。

在这种情况下,当我们水平显示两个图像时, m=1m = 1m=1、 n=2n = 2n=2 。我们将对第一个子图 (img_OpenCV) 使用 p=1p = 1p=1,对第二个子图(img_matplotlib) 使用 p=2p = 2p=2:

from matplotlib import pyplot as plt
plt.subplot(121)
plt.imshow(img_OpenCV)
plt.subplot(122)
plt.imshow(img_matplotlib)
plt.show()

程序输出如下图所示:

可以看出,第一个子图以错误的颜色( BGR 顺序)显示图像,而第二个子图以正确的颜色( RGB 顺序)显示图像。接下来,我们使用 cv2.imshow() 显示两个图像:

cv2.imshow('bgr image', img_OpenCV)
cv2.imshow('rgb image', img_matplotlib)
cv2.waitKey(0)
cv2.destroyAllWindows()

以下屏幕截图显示了执行上述代码获得的结果:

正如预期的那样,屏幕截图中,第一张图以正确的色彩显示图像,而第二张图以错误的颜色显示图像。

此外,如果我们想在同一个窗口中显示两个图像,可以构建一个包含这两个图像的拼接图像,将两张图片水平连接起来。为此,我们需要使用 NumPyconcatenate() 方法。该方法的参数是要连接的两个图像和要在哪个轴上进行堆叠,这里,我们令 axis = 1 (水平堆叠它们):

import numpy as np
img_concats = np.concatenate((img_OpenCV, img_matplotlib), axis=1)
cv2.imshow('bgr image and rgb image', img_concats)
cv2.waitKey(0)
cv2.destroyAllWindows()

下图显示了连接后的图像:

需要考虑的一个因素是 cv2.split() 是一项耗时的操作。如果确实需要划分不同通道,应当首先考虑使用 NumPy 索引。例如,如果想获取图像的一个通道,则可以使用 NumPy 索引获取通道:

B = img_OpenCV[:, :, 0]
G = img_OpenCV[:, :, 1]
R = img_OpenCV[:, :, 2]

另一个需要注意的是,可以使用 NumPy 在一条语句中将图像从 BGR 转换为 RGB:

img_matplotlib = img_OpenCV[:, :, ::-1]

作者:盼小辉丶
链接:https://juejin.cn/post/7054745834629857310
来源:稀土掘金

相关推荐

离谱!写了5年Vue,还不会自动化测试?

前言大家好,我是倔强青铜三。是一名热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新,欢迎关注我,微信公众号:倔强青铜三。Playwright是一个功能强大的端到...

package.json 与 package-lock.json 的关系

模块化开发在前端越来越流行,使用node和npm可以很方便的下载管理项目所需的依赖模块。package.json用来描述项目及项目所依赖的模块信息。那package-lock.json和...

Github 标星35k 的 SpringBoot整合acvtiviti开源分享,看完献上膝盖

前言activiti是目前比较流行的工作流框架,但是activiti学起来还是费劲,还是有点难度的,如何整合在线编辑器,如何和业务表单绑定,如何和系统权限绑定,这些问题都是要考虑到的,不是说纯粹的把a...

Vue3 + TypeScript 前端研发模板仓库

我们把这个Vue3+TypeScript前端研发模板仓库的初始化脚本一次性补全到可直接运行的状态,包括:完整的目录结构所有配置文件研发规范文档示例功能模块(ExampleFeature)...

Vue 2迁移Vue 3:从响应式到性能优化

小伙伴们注意啦!Vue2已经在2023年底正式停止维护,再不升级就要面临安全漏洞没人管的风险啦!而且Vue3带来的性能提升可不是一点点——渲染速度快40%,内存占用少一半,更新速度直接翻倍!还在...

VUE学习笔记:声明式渲染详解,对比WEB与VUE

声明式渲染是指使用简洁的模板语法,声明式的方式将数据渲染进DOM系统。声明式是相对于编程式而言,声明式是面向对象的,告诉框架做什么,具体操作由框架完成。编程式是面向过程思想,需要手动编写代码完成具...

苏州web前端培训班, 苏州哪里有web前端工程师培训

前端+HTML5德学习内容:第一阶段:前端页面重构:PC端网站布局、HTML5+CSS3基础项目、WebAPP页面布局;第二阶段:高级程序设计:原生交互功能开发、面向对象开发与ES5/ES6、工具库...

跟我一起开发微信小程序——扩展组件的代码提示补全

用户自定义代码块步骤:1.HBuilderX中工具栏:工具-代码块设置-vue代码块2.通过“1”步骤打开设置文件...

JimuReport 积木报表 v1.9.3发布,免费可视化报表

项目介绍积木报表JimuReport,是一款免费的数据可视化报表,含报表、大屏和仪表盘,像搭建积木一样完全在线设计!功能涵盖:数据报表、打印设计、图表报表、门户设计、大屏设计等!...

软开企服开源的无忧企业文档(V2.1.3)产品说明书

目录1....

一款面向 AI 的下一代富文本编辑器,已开源

简介AiEditor是一个面向AI的下一代富文本编辑器。开箱即用、支持所有前端框架、支持Markdown书写模式什么是AiEditor?AiEditor是一个面向AI的下一代富文本编辑...

玩转Markdown(2)——抽象语法树的提取与操纵

上一篇玩转Markdown——数据的分离存储与组件的原生渲染发布,转眼已经鸽了大半年了。最近在操纵mdast生成md文件的时候,心血来潮,把玩转Markdown(2)给补上了。...

DeepseekR1+ollama+dify1.0.0搭建企业/个人知识库(入门避坑版)

找了网上的视频和相关文档看了之后,可能由于版本不对或文档格式不对,很容易走弯路,看完这一章,可以让你少踩三天的坑。步骤和注意事项我一一列出来:1,前提条件是在你的电脑上已配置好ollama,dify1...

升级JDK17的理由,核心是降低GC时间

升级前后对比升级方法...

一个vsCode格式化插件_vscode格式化插件缩进量

ESlint...

取消回复欢迎 发表评论: