NumPy之:多维数组中的线性代数
ztj100 2025-03-08 02:58 44 浏览 0 评论
简介
本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算。
多维数据的线性代数通常被用在图像处理的图形变换中,本文将会使用一个图像的例子进行说明。
图形加载和说明
熟悉颜色的朋友应该都知道,一个颜色可以用R,G,B来表示,如果更高级一点,那么还有一个A表示透明度。通常我们用一个四个属性的数组来表示。
对于一个二维的图像来说,其分辨率可以看做是一个X*Y的矩阵,矩阵中的每个点的颜色都可以用(R,G,B)来表示。
有了上面的知识,我们就可以对图像的颜色进行分解了。
首先需要加载一个图像,我们使用imageio.imread方法来加载一个本地图像,如下所示:
import imageio
img=imageio.imread('img.png')
print(type(img))
上面的代码从本地读取图片到img对象中,使用type可以查看img的类型,从运行结果,我们可以看到img的类型是一个数组。
class 'imageio.core.util.Array'
通过img.shape可以得到img是一个(80, 170, 4)的三维数组,也就是说这个图像的分辨率是80*170,每个像素是一个(R,B,G,A)的数组。
最后将图像画出来如下所示:
import matplotlib.pyplot as plt
plt.imshow(img)
图形的灰度
对于三维数组来说,我们可以分别得到三种颜色的数组如下所示:
red_array = img_array[:, :, 0]
green_array = img_array[:, :, 1]
blue_array = img_array[:, :, 2]
有了三个颜色之后我们可以使用下面的公式对其进行灰度变换:
Y=0.2126R + 0.7152G + 0.0722B
上图中Y表示的是灰度。
怎么使用矩阵的乘法呢?使用 @ 就可以了:
img_gray = img_array @ [0.2126, 0.7152, 0.0722]
现在img是一个80 * 170的矩阵。
现在使用cmap=”gray”作图:
plt.imshow(img_gray, cmap="gray")
可以得到下面的灰度图像:
灰度图像的压缩
灰度图像是对图像的颜色进行变换,如果要对图像进行压缩该怎么处理呢?
矩阵运算中有一个概念叫做奇异值和特征值。
设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。
一个矩阵的一组特征向量是一组正交向量。
即特征向量被施以线性变换 A 只会使向量伸长或缩短而其方向不被改变。
特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。
假如A是m * n阶矩阵,q=min(m,n),A*A的q个非负特征值的算术平方根叫作A的奇异值。
特征值分解可以方便的提取矩阵的特征,但是前提是这个矩阵是一个方阵。如果是非方阵的情况下,就需要用到奇异值分解了。先看下奇异值分解的定义:
A=UΣV^TA=UΣVT
其中A是目标要分解的m * n的矩阵,U是一个 m * m的方阵,Σ 是一个m * n 的矩阵,其非对角线上的元素都是0。V^TVT是V的转置,也是一个n * n的矩阵。
奇异值跟特征值类似,在矩阵Σ中也是从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵。r是一个远小于m、n的数,这样就可以进行压缩矩阵。
通过奇异值分解,我们可以通过更加少量的数据来近似替代原矩阵。
要想使用奇异值分解svd可以直接调用linalg.svd 如下所示:
U, s, Vt = linalg.svd(img_gray)
其中U是一个m * m矩阵,Vt是一个n * n矩阵。
在上述的图像中,U是一个(80, 80)的矩阵,而Vt是一个(170, 170) 的矩阵。而s是一个80的数组,s包含了img中的奇异值。
如果将s用图像来表示,我们可以看到大部分的奇异值都集中在前的部分:
这也就意味着,我们可以取s中前面的部分值来进行图像的重构。
使用s对图像进行重构,需要将s还原成80 * 170 的矩阵:
# 重建
import numpy as np
Sigma = np.zeros((80, 170))
for i in range(80):
Sigma[i, i] = s[i]
使用 U @ Sigma @ Vt 即可重建原来的矩阵,可以通过计算linalg.norm来比较一下原矩阵和重建的矩阵之间的差异。
linalg.norm(img_gray - U @ Sigma @ Vt)
或者使用np.allclose来比较两个矩阵的不同:
np.allclose(img_gray, U @ Sigma @ Vt)
或者只取s数组的前10个元素,进行重新绘图,比较一下和原图的区别:
k = 10
approx = U @ Sigma[:, :k] @ Vt[:k, :]
plt.imshow(approx, cmap="gray")
可以看到,差异并不是很大:
原始图像的压缩
上一节我们讲到了如何进行灰度图像的压缩,那么如何对原始图像进行压缩呢?
同样可以使用linalg.svd对矩阵进行分解。
但是在使用前需要进行一些处理,因为原始图像的img_array 是一个(80, 170, 3)的矩阵–这里我们将透明度去掉了,只保留了R,B,G三个属性。
在进行转换之前,我们需要把不需要变换的轴放到最前面,也就是说将index=2,换到index=0的位置,然后进行svd操作:
img_array_transposed = np.transpose(img_array, (2, 0, 1))
print(img_array_transposed.shape)
U, s, Vt = linalg.svd(img_array_transposed)
print(U.shape, s.shape, Vt.shape)
同样的,现在s是一个(3, 80)的矩阵,还是少了一维,如果重建图像,需要将其进行填充和处理,最后将重建的图像输出:
Sigma = np.zeros((3, 80, 170))
for j in range(3):
np.fill_diagonal(Sigma[j, :, :], s[j, :])
reconstructed = U @ Sigma @ Vt
print(reconstructed.shape)
plt.imshow(np.transpose(reconstructed, (1, 2, 0)))
当然,也可以选择前面的K个特征值对图像进行压缩:
approx_img = U @ Sigma[..., :k] @ Vt[..., :k, :]
print(approx_img.shape)
plt.imshow(np.transpose(approx_img, (1, 2, 0)))
重新构建的图像如下:
对比可以发现,虽然损失了部分精度,但是图像还是可以分辨的。
总结
图像的变化会涉及到很多线性运算,大家可以以此文为例,仔细研究。
本文已收录于
http://www.flydean.com/08-python-numpy-linear-algebra/最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!
相关推荐
- 其实TensorFlow真的很水无非就这30篇熬夜练
-
好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...
- 交叉验证和超参数调整:如何优化你的机器学习模型
-
准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...
- 机器学习交叉验证全指南:原理、类型与实战技巧
-
机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...
- 深度学习中的类别激活热图可视化
-
作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...
- 超强,必会的机器学习评估指标
-
大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...
- 机器学习入门教程-第六课:监督学习与非监督学习
-
1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...
- Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置
-
你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...
- 神经网络与传统统计方法的简单对比
-
传统的统计方法如...
- 自回归滞后模型进行多变量时间序列预测
-
下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...
- 苹果AI策略:慢哲学——科技行业的“长期主义”试金石
-
苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...
- 时间序列预测全攻略,6大模型代码实操
-
如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)