NumPy之:多维数组中的线性代数
ztj100 2025-03-08 02:58 8 浏览 0 评论
简介
本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算。
多维数据的线性代数通常被用在图像处理的图形变换中,本文将会使用一个图像的例子进行说明。
图形加载和说明
熟悉颜色的朋友应该都知道,一个颜色可以用R,G,B来表示,如果更高级一点,那么还有一个A表示透明度。通常我们用一个四个属性的数组来表示。
对于一个二维的图像来说,其分辨率可以看做是一个X*Y的矩阵,矩阵中的每个点的颜色都可以用(R,G,B)来表示。
有了上面的知识,我们就可以对图像的颜色进行分解了。
首先需要加载一个图像,我们使用imageio.imread方法来加载一个本地图像,如下所示:
import imageio
img=imageio.imread('img.png')
print(type(img))
上面的代码从本地读取图片到img对象中,使用type可以查看img的类型,从运行结果,我们可以看到img的类型是一个数组。
class 'imageio.core.util.Array'
通过img.shape可以得到img是一个(80, 170, 4)的三维数组,也就是说这个图像的分辨率是80*170,每个像素是一个(R,B,G,A)的数组。
最后将图像画出来如下所示:
import matplotlib.pyplot as plt
plt.imshow(img)
图形的灰度
对于三维数组来说,我们可以分别得到三种颜色的数组如下所示:
red_array = img_array[:, :, 0]
green_array = img_array[:, :, 1]
blue_array = img_array[:, :, 2]
有了三个颜色之后我们可以使用下面的公式对其进行灰度变换:
Y=0.2126R + 0.7152G + 0.0722B
上图中Y表示的是灰度。
怎么使用矩阵的乘法呢?使用 @ 就可以了:
img_gray = img_array @ [0.2126, 0.7152, 0.0722]
现在img是一个80 * 170的矩阵。
现在使用cmap=”gray”作图:
plt.imshow(img_gray, cmap="gray")
可以得到下面的灰度图像:
灰度图像的压缩
灰度图像是对图像的颜色进行变换,如果要对图像进行压缩该怎么处理呢?
矩阵运算中有一个概念叫做奇异值和特征值。
设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。
一个矩阵的一组特征向量是一组正交向量。
即特征向量被施以线性变换 A 只会使向量伸长或缩短而其方向不被改变。
特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。
假如A是m * n阶矩阵,q=min(m,n),A*A的q个非负特征值的算术平方根叫作A的奇异值。
特征值分解可以方便的提取矩阵的特征,但是前提是这个矩阵是一个方阵。如果是非方阵的情况下,就需要用到奇异值分解了。先看下奇异值分解的定义:
A=UΣV^TA=UΣVT
其中A是目标要分解的m * n的矩阵,U是一个 m * m的方阵,Σ 是一个m * n 的矩阵,其非对角线上的元素都是0。V^TVT是V的转置,也是一个n * n的矩阵。
奇异值跟特征值类似,在矩阵Σ中也是从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵。r是一个远小于m、n的数,这样就可以进行压缩矩阵。
通过奇异值分解,我们可以通过更加少量的数据来近似替代原矩阵。
要想使用奇异值分解svd可以直接调用linalg.svd 如下所示:
U, s, Vt = linalg.svd(img_gray)
其中U是一个m * m矩阵,Vt是一个n * n矩阵。
在上述的图像中,U是一个(80, 80)的矩阵,而Vt是一个(170, 170) 的矩阵。而s是一个80的数组,s包含了img中的奇异值。
如果将s用图像来表示,我们可以看到大部分的奇异值都集中在前的部分:
这也就意味着,我们可以取s中前面的部分值来进行图像的重构。
使用s对图像进行重构,需要将s还原成80 * 170 的矩阵:
# 重建
import numpy as np
Sigma = np.zeros((80, 170))
for i in range(80):
Sigma[i, i] = s[i]
使用 U @ Sigma @ Vt 即可重建原来的矩阵,可以通过计算linalg.norm来比较一下原矩阵和重建的矩阵之间的差异。
linalg.norm(img_gray - U @ Sigma @ Vt)
或者使用np.allclose来比较两个矩阵的不同:
np.allclose(img_gray, U @ Sigma @ Vt)
或者只取s数组的前10个元素,进行重新绘图,比较一下和原图的区别:
k = 10
approx = U @ Sigma[:, :k] @ Vt[:k, :]
plt.imshow(approx, cmap="gray")
可以看到,差异并不是很大:
原始图像的压缩
上一节我们讲到了如何进行灰度图像的压缩,那么如何对原始图像进行压缩呢?
同样可以使用linalg.svd对矩阵进行分解。
但是在使用前需要进行一些处理,因为原始图像的img_array 是一个(80, 170, 3)的矩阵–这里我们将透明度去掉了,只保留了R,B,G三个属性。
在进行转换之前,我们需要把不需要变换的轴放到最前面,也就是说将index=2,换到index=0的位置,然后进行svd操作:
img_array_transposed = np.transpose(img_array, (2, 0, 1))
print(img_array_transposed.shape)
U, s, Vt = linalg.svd(img_array_transposed)
print(U.shape, s.shape, Vt.shape)
同样的,现在s是一个(3, 80)的矩阵,还是少了一维,如果重建图像,需要将其进行填充和处理,最后将重建的图像输出:
Sigma = np.zeros((3, 80, 170))
for j in range(3):
np.fill_diagonal(Sigma[j, :, :], s[j, :])
reconstructed = U @ Sigma @ Vt
print(reconstructed.shape)
plt.imshow(np.transpose(reconstructed, (1, 2, 0)))
当然,也可以选择前面的K个特征值对图像进行压缩:
approx_img = U @ Sigma[..., :k] @ Vt[..., :k, :]
print(approx_img.shape)
plt.imshow(np.transpose(approx_img, (1, 2, 0)))
重新构建的图像如下:
对比可以发现,虽然损失了部分精度,但是图像还是可以分辨的。
总结
图像的变化会涉及到很多线性运算,大家可以以此文为例,仔细研究。
本文已收录于
http://www.flydean.com/08-python-numpy-linear-algebra/最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!
相关推荐
- 使用 Pinia ORM 管理 Vue 中的状态
-
转载说明:原创不易,未经授权,谢绝任何形式的转载状态管理是构建任何Web应用程序的重要组成部分。虽然Vue提供了管理简单状态的技术,但随着应用程序复杂性的增加,处理状态可能变得更具挑战性。这就是为什么...
- Vue3开发企业级音乐Web App 明星讲师带你学习大厂高质量代码
-
Vue3开发企业级音乐WebApp明星讲师带你学习大厂高质量代码下栽课》jzit.top/392/...
- 一篇文章说清 webpack、vite、vue-cli、create-vue 的区别
-
webpack、vite、vue-cli、create-vue这些都是什么?看着有点晕,不要怕,我们一起来分辨一下。...
- 超赞 vue2/3 可视化打印设计VuePluginPrint
-
今天来给大家推荐一款非常不错的Vue可拖拽打印设计器Hiprint。引入使用//main.js中引入安装import{hiPrintPlugin}from'vue-plugin-...
- 搭建Trae+Vue3的AI开发环境(vue3 ts开发)
-
从2024年2025年,不断的有各种AI工具会在自媒体中火起来,号称各种效率王炸,而在AI是否会替代打工人的话题中,程序员又首当其冲。...
- Vue中mixin怎么理解?(vue的mixins有什么用)
-
作者:qdmryt转发链接:https://mp.weixin.qq.com/s/JHF3oIGSTnRegpvE6GSZhg前言...
- Vue脚手架安装,初始化项目,打包并用Tomcat和Nginx部署
-
1.创建Vue脚手架#1.在本地文件目录创建my-first-vue文件夹,安装vue-cli脚手架:npminstall-gvue-cli安装过程如下图所示:创建my-first-vue...
- 新手如何搭建个人网站(小白如何搭建个人网站)
-
ElementUl是饿了么前端团队推出的桌面端UI框架,具有是简洁、直观、强悍和低学习成本等优势,非常适合初学者使用。因此,本次项目使用ElementUI框架来完成个人博客的主体开发,欢迎大家讨论...
- 零基础入门vue开发(vue快速入门与实战开发)
-
上面一节我们已经成功的安装了nodejs,并且配置了npm的全局环境变量,那么这一节我们就来正式的安装vue-cli,然后在webstorm开发者工具里运行我们的vue项目。这一节有两种创建vue项目...
- .net core集成vue(.net core集成vue3)
-
react、angular、vue你更熟悉哪个?下边这个是vue的。要求需要你的计算机安装有o.netcore2.0以上版本onode、webpack、vue-cli、vue(npm...
- 使用 Vue 脚手架,为什么要学 webpack?(一)
-
先问大家一个很简单的问题:vueinitwebpackprjectName与vuecreateprojectName有什么区别呢?它们是Vue-cli2和Vue-cli3创建...
- vue 构建和部署(vue项目部署服务器)
-
普通的搭建方式(安装指令)安装Node.js检查node是否已安装,终端输入node-v会使用命令行(安装)npminstallvue-cli-首先安装vue-clivueinitwe...
- Vue.js 环境配置(vue的环境搭建)
-
说明:node.js和vue.js的关系:Node.js是一个基于ChromeV8引擎的JavaScript运行时环境;类比:Java的jvm(虚拟机)...
- vue项目完整搭建步骤(vuecli项目搭建)
-
简介为了让一些不太清楚搭建前端项目的小白,更快上手。今天我将一步一步带领你们进行前端项目的搭建。前端开发中需要用到框架,那vue作为三大框架主流之一,在工作中很常用。所以就以vue为例。...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 使用 Pinia ORM 管理 Vue 中的状态
- Vue3开发企业级音乐Web App 明星讲师带你学习大厂高质量代码
- 一篇文章说清 webpack、vite、vue-cli、create-vue 的区别
- 超赞 vue2/3 可视化打印设计VuePluginPrint
- 搭建Trae+Vue3的AI开发环境(vue3 ts开发)
- 如何在现有的Vue项目中嵌入 Blazor项目?
- Vue中mixin怎么理解?(vue的mixins有什么用)
- Vue脚手架安装,初始化项目,打包并用Tomcat和Nginx部署
- 新手如何搭建个人网站(小白如何搭建个人网站)
- 零基础入门vue开发(vue快速入门与实战开发)
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)