基于OpenCV的位姿估计
ztj100 2025-03-08 02:57 42 浏览 0 评论
今天我们的目标是找出我们相对于球场上的位置,从而了解我们在比赛中的全局位置。
01.什么是单应性
单应性是一种平面关系,可将点从一个平面转换为另一个平面。它是一个3乘3的矩阵,转换3维矢量表示平面上的2D点。这些向量称为同质坐标,下面将进行讨论。下图说明了这种关系。这四个点在红色平面和图像平面之间相对应。单应性存储相机的位置和方向,这可以通过分解单应性矩阵来检索。
针孔相机模型是相机的数学表示。它接受3D点并将其投影到像上图所示的图像平面上。该模型的重要方面是焦点,像平面(上图中的灰度平面),主点(上图中的像面上的粗体点),焦距(像平面与像之间的距离)焦点)和光轴(垂直于穿过焦点的像平面的线)。可以在投影矩阵中编码该变换,该投影矩阵将表示3D点的4维均匀向量转换为表示图像平面上2d点的3维均匀向量。
齐次坐标是表示计算机视觉中的点的投影坐标。由于拍摄照片时会从3D转换为2D,因此深度范围会丢失。因此,可以将无限数量的3D点投影到相同的2D点,这使得同质坐标在描述可能性射线时非常通用,因为它们的比例相似。齐次坐标仅取直角坐标,并将维数增大到末端。
用齐次坐标表示的笛卡尔坐标,在比例上也相等。
请注意,三角形可能会越来越远且更大,但仍然可以产生相同的图像给定同质坐标,将所有元素除以矢量的最后一个元素(比例因子),然后笛卡尔坐标是一个矢量,该矢量由除最后一个元素之外的所有元素组成。
02.投影矩阵
投影矩阵是与相机属性相关的其他两个矩阵的乘积。它们是外部和内部相机矩阵。这些矩阵分别存储摄像机的外部参数和固有参数(因此命名)。
投影矩阵(3 x 4矩阵)
外参矩阵
外在矩阵存储摄像机在全局空间中的位置。该信息存储在旋转矩阵以及平移矢量中。旋转矩阵存储相机的3D方向,而平移矢量将其位置存储在3D空间中。
旋转矩阵
然后将旋转矩阵和平移向量连接起来以创建外部矩阵。从功能上讲,外部矩阵将3D同类坐标从全局坐标系转换为相机坐标系。因此,所有变换后的矢量将相对于焦点在空间中表示相同的位置。
内参矩阵
本征矩阵存储相机的本征,例如焦距和主点。焦距(f 1和f 6)是从焦点到像面的距离,可以用像素宽度或像素高度(因此为何有2个焦距)来度量。每个像素都不是一个完美的正方形,因此每个边都有不同的边长。主点(c和c)是光轴和像平面(像平面的功能中心)的交点。该矩阵将相对于焦点的3D坐标转换到图像平面上;将其视为拍摄照片的矩阵。当与外部矩阵组合时,将创建针孔相机模型。
针孔相机数学模型
现在,单应性是针孔相机模型的特殊情况,其中投影到相机上的所有现实世界坐标都位于z坐标为0的平面上。
H是单应性矩阵,是3 x 3矩阵,可将点从一个平面转换为另一个平面。在这里,变换是在Z = 0的平面和指向该点的图像平面之间进行的投影。单应性矩阵通常通过4点算法求解。本质上,它使用来自2个平面的4个点对应来求解单应矩阵。在OpenCV中,我们可以使用cv2.findHomography方法找到单应矩阵:
cv2.findHomography(
此方法需要某种形式的特征点跟踪,以便上面方法的结果。坐标测量的质量将有助于上述方法的准确性。一旦有了单应性矩阵,就可以将其分解为摄像机的平移和旋转。单应矩阵的分解如下所示:
我们可以通过将解决方案矩阵的前两列用作旋转矩阵中的前两列,然后使用叉积来找到旋转矩阵的最后一列,从而得出旋转矩阵。翻译是解决方案矩阵的最后一列。
03.分解代码
'''
H is the homography matrix
K is the camera calibration matrix
T is translation
R is rotation
'''
H = H.T
h1 = H[0]
h2 = H[1]
h3 = H[2]
K_inv = np.linalg.inv(K)
L = 1 / np.linalg.norm(np.dot(K_inv, h1))
r1 = L * np.dot(K_inv, h1)
r2 = L * np.dot(K_inv, h2)
r3 = np.cross(r1, r2)
T = L * (K_inv @ h3.reshape(3, 1))
R = np.array([[r1], [r2], [r3]])
R = np.reshape(R, (3, 3))
代码链接:
https://github.com/RaubCamaioni/OpenCV_Position
04,优势
使用Homography比其他算法简单得多,因为它非常简单直观。利用基本或基本矩阵的其他方法需要复杂的算法和更多的实现精力。由于所有视觉本地化方法都在做相同的事情,因此最好在可能的情况下使用Homography,以节省时间和精力。
(小白学视觉独家授权头条号)
- 上一篇:物理老师教你学Python语言(下篇)
- 下一篇:自动驾驶规划轨迹 -- 贝塞尔曲线
相关推荐
- 其实TensorFlow真的很水无非就这30篇熬夜练
-
好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...
- 交叉验证和超参数调整:如何优化你的机器学习模型
-
准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...
- 机器学习交叉验证全指南:原理、类型与实战技巧
-
机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...
- 深度学习中的类别激活热图可视化
-
作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...
- 超强,必会的机器学习评估指标
-
大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...
- 机器学习入门教程-第六课:监督学习与非监督学习
-
1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...
- Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置
-
你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...
- 神经网络与传统统计方法的简单对比
-
传统的统计方法如...
- 自回归滞后模型进行多变量时间序列预测
-
下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...
- 苹果AI策略:慢哲学——科技行业的“长期主义”试金石
-
苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...
- 时间序列预测全攻略,6大模型代码实操
-
如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)