百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

基于Python的地图绘制教程_python地图代码

ztj100 2025-02-20 18:58 18 浏览 0 评论

本文将介绍通过Python绘制地形图的方法,所需第三方Python相关模块包括 rasterio、geopandas、cartopy 等,可通过 pip 等方式安装。

1 示例代码

1.1 导入相关模块


import rasterio
import geopandas as gpd
import numpy as np
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap

1.2 设置地图字体及字号


plt.rcParams["font.family"] = "Times New Roman"
plt.rcParams["font.size"] = 14

1.3 绘制地图

# 设置投影:墨卡托投影
# cartopy 投影说明:https://www.cnblogs.com/youxiaogang/p/14247184.html
projection = ccrs.Mercator()


# 绘制地图
fig, ax = plt.subplots(figsize=(20, 10), subplot_kw={'projection': projection})


# 设置地图范围(数值参数为对应投影下的范围坐标)
ax.set_extent([13530000, 14630000, 4960000, 5850000], crs=projection)


# 读取矢量文件
shp = gpd.read_file("Data/Jilin_Mercator.shp")
shp.plot(ax=ax, transform=projection, edgecolor="black", linewidth=1, facecolor="none")


# 创建自定义颜色映射
colors = ["#369121", "#95C769", "#FFFFBF", "#E6865A", "#D14E30", "#BA1414"]
n_bins = 100  # 定义色带的颜色数量
cmap_name = "green_brown"
cm = LinearSegmentedColormap.from_list(cmap_name, colors, N=n_bins)


# 读取地形栅格数据
dataset = rasterio.open("Data/DEM_Jilin_Mercator.tif")
data = dataset.read(1)  # 读取第一个波段的数据
nodata_value = dataset.nodata   # 获取NoData值
# 创建掩膜,去除NoData区域
data = np.ma.masked_where(data == nodata_value, data)


# 将地形栅格添加到地图中
extent = [dataset.bounds.left, dataset.bounds.right,
dataset.bounds.bottom, dataset.bounds.top]
im = ax.imshow(data, origin="upper", extent=extent,
transform=projection, cmap=cm)


# 绘制网格线并添加标签
gl = ax.gridlines(draw_labels=True, linestyle="--", color="#4F4F4F")
gl.xlocator = plt.FixedLocator(range(120, 135, 3))
gl.ylocator = plt.FixedLocator(range(40, 50, 2))


# 添加色带,设置色带的缩放比例为 0.4,主图和色带之间的间距为 0.1
cbar = plt.colorbar(im, ax=ax, orientation="horizontal", shrink=0.4, pad=0.1)
cbar.set_label("Elevation (m)", labelpad=10) # 设置色带标签与色带的距离为 10 点
cbar.ax.xaxis.set_label_position("top")  # 设置色带标签位置


plt.savefig("Pic.jpg", dpi=600)
plt.show()

2 结果图展示

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: