百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

python数据分析:详解数据框的合并

ztj100 2025-02-18 14:24 9 浏览 0 评论

不知道大家有没有分析过Kaggle的数据或者参加过Kaggle的挑战,里面的数据都分布在几个不同的数据集中,合并数据在所难免。今天给大家详细总结一波pandas中数据框合并和连接的方法。建议收藏,哈哈。

生成练习用的数据框

首先我们先用如下代码生成3个数据框,作为演示讲解之用。

df1 =pd.DataFrame({
        'id': ['1', '2', '3', '4', '5'],
        'Feature1': ['A', 'C', 'E', 'G', 'I'],
        'Feature2': ['B', 'D', 'F', 'H', 'J']}) 
df2 =pd.DataFrame({
        'id': ['1', '2', '6', '7', '8'],
        'Feature1': ['K', 'M', 'O', 'Q', 'S'],
        'Feature2': ['L', 'N', 'P', 'R', 'T']})
df3 = pd.DataFrame({
        'id': ['1', '2', '3', '4', '5', '7', '8', '9', '10', '11'],
        'Feature3': [12, 13, 14, 15, 16, 17, 15, 12, 13, 23]})

得到3个数据框,如下:



连接数据框Concatenate DataFrames

如果只是简单的连接两个数据框的行的话,直接调用concat()方法即可

df_row = pd.concat([df1, df2])

df_row



可以看到,数据框df1和df2就以行连接在一起了,但是你注意到没,此时数据框的索引有问题,我们想要的索引应该自动给我们填好才对,这个时候我们需要将ignore_index参数设置为True。

df_row = pd.concat([df1, df2], ignore_index=True)

这个时候索引就正确了。

有时候,你虽然连接了2个数据框,但是你还是想知道新数据框的数据分别来自哪个数据框,这个时候调用keys参数就可以,例如,我们在上面的例子中将来自df1的数据和df2的数据分别加上标签x,y。

df_keys = pd.concat([df1,df2], keys=['x', 'y'])

df_keys


可以看到,新数据框中哪些数据来自于哪个数据框一目了然。

同时,给新的数据框加上标签也有助于我们在新数据中切片出旧的数据框,例如

df_keys.loc['y']


通过以上代码,很容易在新数据框中切片出了df2。

在连接数据框时还有一个技巧,就是将数据框以字典值的形式传递给 concat(),可以在连接的新数据框中自动加上标签,这个标签就是字典的键。看下例:

df_piece = pd.concat({'第一个框':df1,'第二个框':df2})

df_piece


有没有很好使?

concat()函数也可以横向连接数据框,只需要将axis设置为1即可

df_col = pd.concat([df1,df2], axis=1)

df_col


可以看到这个就是横向连接。

合并数据框Merge DataFrames

我们看一下如何将df_row(由df1和df2连接后得到,见之前的例子)和df3以共同的id为基础合并起来。

df_merge_col = pd.merge(df_row, df3, on='id')

df_merge_col


此时,我们注意到id等于1的行出现了2次,是因为在df_row中是有2个id等于1的,而在df3中id等于1只有一次,所以合并后的feature3都是12。

还有一种情况是你要合并的2个数据框没有一样名字的列,需要你指定,这个时候就要用到left_on,right_on参数了。

df_merge_difkey = pd.merge(df_row, df3, left_on='id', right_on='id')

df_merge_difkey


此例中我们左右数据框都指定以id为基础进行合并。

还有一种情况是,你想给原先的数据框加一行新数据,看下例:

add_row = pd.Series(['10', 'X1', 'X2', 'X3'],
                    index=['id','Feature1', 'Feature2', 'Feature3'])

df_add_row = df_merge_col.append(add_row, ignore_index=True)

df_add_row

可以看到,通过append可以给一个数据框加上一个新的series。

不同的合并逻辑Outer,Inner,Right,Left与index

Outer合并会将两个数据库的所有数据都合并,相当于取原来数据库的并集形成一个新的数据库

df_outer = pd.merge(df1, df2, on='id', how='outer')

df_outer


可以看到,这种合并方法,生成的新数据集中会有很多NaN的值,还有,需要注意的是这种方法会自动将相同列名加上后缀,而且这个后缀是可以改的,看下例:

df_suffix = pd.merge(df1, df2, left_on='id',right_on='id',how='outer',suffixes=('_left','_right'))

df_suffix


可以看到suffixes参数可以修改后缀。

Inner合并生成的新数据集中只会有原来2个数据集中都有的数据,相当于取了两个数据框的交集。

df_inner = pd.merge(df1, df2, on='id', how='inner')

df_inner


相应的,Right,和Left就是分别以第二个和第一个数据框中的变量为基准进行数据框的合并,大家也可以试试。有时候,我们会根据2个数据框的index来合并,此时,只需要将right_index,left_index两个参数设置为True即可。看下面例子:

df_index = pd.merge(df1, df2, right_index=True, left_index=True)

df_index


结论

好了,今天给大家介绍了concat() 和 merge()合并数据框的用法,希望对大家有帮助。感谢大家耐心看完。发表这些东西的主要目的就是督促自己,希望大家关注评论指出不足,一起进步。内容我都会写的很细,用到的数据集也会在原文中给出链接,你只要按照文章中的代码自己也可以做出一样的结果,一个目的就是零基础也能懂,因为自己就是什么基础没有从零学Python的,加油。

(站外链接发不了,请关注后私信回复“数据链接”获取本头条号所有使用数据)

往期精彩:

python数据分析:缺失数据的处理

python数据分析:离群值的检测和处理

python应用:如何用python提取pdf文件中的文字

相关推荐

告别手动操作:一键多工作表合并的实用方法

通常情况下,我们需要将同一工作簿内不同工作表中的数据进行合并处理。如何快速有效地完成这些数据的整合呢?这主要取决于需要合并的源数据的结构。...

【MySQL技术专题】「优化技术系列」常用SQL的优化方案和技术思路

概述前面我们介绍了MySQL中怎么样通过索引来优化查询。日常开发中,除了使用查询外,我们还会使用一些其他的常用SQL,比如INSERT、GROUPBY等。对于这些SQL语句,我们该怎么样进行优化呢...

9.7寸视网膜屏原道M9i双系统安装教程

泡泡网平板电脑频道4月17日原道M9i采用Win8安卓双系统,对于喜欢折腾的朋友来说,刷机成了一件难事,那么原道M9i如何刷机呢?下面通过详细地图文,介绍原道M9i的刷机操作过程,在刷机的过程中,要...

如何做好分布式任务调度——Scheduler 的一些探索

作者:张宇轩,章逸,曾丹初识Scheduler找准定位:分布式任务调度平台...

mysqldump备份操作大全及相关参数详解

mysqldump简介mysqldump是用于转储MySQL数据库的实用程序,通常我们用来迁移和备份数据库;它自带的功能参数非常多,文中列举出几乎所有常用的导出操作方法,在文章末尾将所有的参数详细说明...

大厂面试冲刺,Java“实战”问题三连,你碰到了哪个?

推荐学习...

亿级分库分表,如何丝滑扩容、如何双写灰度

以下是基于亿级分库分表丝滑扩容与双写灰度设计方案,结合架构图与核心流程说明:一、总体设计目标...

MYSQL表设计规范(mysql表设计原则)

日常工作总结,不是通用规范一、表设计库名、表名、字段名必须使用小写字母,“_”分割。...

怎么解决MySQL中的Duplicate entry错误?

在使用MySQL数据库时,我们经常会遇到Duplicateentry错误,这是由于插入或更新数据时出现了重复的唯一键值。这种错误可能会导致数据的不一致性和完整性问题。为了解决这个问题,我们可以采取以...

高并发下如何防重?(高并发如何防止重复)

前言最近测试给我提了一个bug,说我之前提供的一个批量复制商品的接口,产生了重复的商品数据。...

性能压测数据告诉你MySQL和MariaDB该怎么选

1.压测环境为了尽可能的客观公正,本次选择同一物理机上的两台虚拟机,一台用作数据库服务器,一台用作运行压测工具mysqlslap,操作系统均为UbuntuServer22.04LTS。...

屠龙之技 --sql注入 不值得浪费超过十天 实战中sqlmap--lv 3通杀全国

MySQL小结发表于2020-09-21分类于知识整理阅读次数:本文字数:67k阅读时长≈1:01...

破防了,谁懂啊家人们:记一次 mysql 问题排查

作者:温粥一、前言谁懂啊家人们,作为一名java开发,原来以为mysql这东西,写写CRUD,不是有手就行吗;你说DDL啊,不就是设计个表结构,搞几个索引吗。...

SpringBoot系列Mybatis之批量插入的几种姿势

...

MySQL 之 Performance Schema(mysql安装及配置超详细教程)

MySQL之PerformanceSchema介绍PerformanceSchema提供了在数据库运行时实时检查MySQL服务器的内部执行情况的方法,通过监视MySQL服务器的事件来实现监视内...

取消回复欢迎 发表评论: