如何在Python中创建Gif动图?(动图数据可视化基础教学)
ztj100 2025-02-04 17:11 17 浏览 0 评论
随着数据以前所未有的速度不断膨胀,数据分析师们往往被要求对数据进行分析并加以理解。一旦发生这种情况,就需要更加有效的方式来传达数据。
然而,传达数据分析的结果往往十分棘手。为了更有效地交流,数据可视化是一种流行且非常有效的技巧。
把世界上所有没有经过处理的数据掌握在我们手里并不能让交流变得容易,反而会变得更加困难--Cole Nussbaumer Knaflic
为了更加方便我们的交流,数据可视化至关重要。动图数据可视化可以以更形象、更直观的形式把数据呈现给他人看。
在本文中,我们将一步步学习如何制作图表数据的动图可视化,学习如何把数据可视化成线条图、条形图和饼状图。
动画是如何生成的?
在典型的方式中,正如你在Python中所期望的那样,存在一个非常易于使用的包,它使我们能够为数据可视化添加额外的维度。
该包是 FuncAnimation 扩展方法,是 Python matplotlib 库中 Animation 类的一部分。我们将讨论如何使用它的多个示例,你可以将此函数看作一个while循环,它将不断在画布上重新绘制我们的图形。
1.如何使用数据库?
数据动图可视化从接入数据库开始:
import matplotlib.animation as ani
animator = ani.FuncAnimation(fig, chartfunc, interval = 100)
让我们仔细看看FuncAnimation如何输入:
- fig 是我们用来“绘制我们的图形”的图形对象
- chartfunc 是一个接受数字输入的函数,它表示时间序列上的时间(随着数字的增加,我们沿着时间线移动)
- interval 是帧之间的延迟(毫秒),默认为200。
我们需要做的就是把它们的图形参数化为一个函数,这个函数把时间序列中的点作为输入,这就是动图化的开始!
入门
如果你对数据可视化基础知识不太了解,建议点击下面的链接来仔细学习相关内容:
接下来,我们将使用来自新冠肺炎的数据,并使用下面代码给出的最终数据集。
import matplotlib.animation as ani
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'
df = pd.read_csv(url, delimiter=',', header='infer')
df_interest = df.loc[
df['Country/Region'].isin(['United Kingdom', 'US', 'Italy', 'Germany'])
& df['Province/State'].isna()]
df_interest.rename(
index=lambda x: df_interest.at[x, 'Country/Region'], inplace=True)
df1 = df_interest.transpose()
df1 = df1.drop(['Province/State', 'Country/Region', 'Lat', 'Long'])
df1 = df1.loc[(df1 != 0).any(1)]
df1.index = pd.to_datetime(df1.index)
动态线条图
我们需要做的第一件事是定义图的各项,这些项将保持不变。 也就是说,创建图形对象,x和y标签,设置线条颜色和图形边距。
import numpy as np
import matplotlib.pyplot as plt
color = ['red', 'green', 'blue', 'orange']
fig = plt.figure()
plt.xticks(rotation=45, ha="right", rotation_mode="anchor") #rotate the x-axis values
plt.subplots_adjust(bottom = 0.2, top = 0.9) #ensuring the dates (on the x-axis) fit in the screen
plt.ylabel('No of Deaths')
plt.xlabel('Dates')
然后,我们必须设置曲线函数,然后设置其动画:
def buildmebarchart(i=int):
plt.legend(df1.columns)
p = plt.plot(df1[:i].index, df1[:i].values) #note it only returns the dataset, up to the point i
for i in range(0,4):
p[i].set_color(color[i]) #set the colour of each curve
import matplotlib.animation as ani
animator = ani.FuncAnimation(fig, buildmebarchart, interval = 100)
plt.show()
动态饼状图
代码结构看起来与线图的结构相同。但是,这里面还是会有一些区别。
import numpy as np
import matplotlib.pyplot as plt
fig,ax = plt.subplots()
explode=[0.01,0.01,0.01,0.01] #pop out each slice from the pie
def getmepie(i):
def absolute_value(val): #turn % back to a number
a = np.round(val/100.*df1.head(i).max().sum(), 0)
return int(a)
ax.clear()
plot = df1.head(i).max().plot.pie(y=df1.columns,autopct=absolute_value, label='',explode = explode, shadow = True)
plot.set_title('Total Number of Deaths\n' + str(df1.index[min( i, len(df1.index)-1 )].strftime('%y-%m-%d')), fontsize=12)
import matplotlib.animation as ani
animator = ani.FuncAnimation(fig, getmepie, interval = 200)
plt.show()
主要区别之一是,在上面的代码中,我们每次返回的是一组值。在动图线状图中,我们将整个时间序列返回到我们所处的点。我们通过使用以下代码实现:
df1.head(i).max()
head(i)返回一个时间序列,但是 .max()确保我们只得到最新的记录(因为死亡总数要么保持不变,要么上升)。
动态条形图
动图条形图的创建与前面的两个例子一样。在这个例子中,我创建了一个水平条形图和一个垂直条形图。根据你要查看的对象,只需定义变量栏即可。
fig = plt.figure()
bar = ''
def buildmebarchart(i=int):
iv = min(i, len(df1.index)-1) #the loop iterates an extra one time, which causes the dataframes to go out of bounds. This was the easiest (most lazy) way to solve this :)
objects = df1.max().index
y_pos = np.arange(len(objects))
performance = df1.iloc[[iv]].values.tolist()[0]
if bar == 'vertical':
plt.bar(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])
plt.xticks(y_pos, objects)
plt.ylabel('Deaths')
plt.xlabel('Countries')
plt.title('Deaths per Country \n' + str(df1.index[iv].strftime('%y-%m-%d')))
else:
plt.barh(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])
plt.yticks(y_pos, objects)
plt.xlabel('Deaths')
plt.ylabel('Countries')
animator = ani.FuncAnimation(fig, buildmebarchart, interval=100)
plt.show()
如何保存动画图形?
因为我们已经创建了动态数据图形,并希望把图片保存下来,我们该怎么做?
只需要一行代码即可:
animator.save(r'C:\temp\myfirstAnimation.gif')
以上为本次如何利用Python来实现动图数据可视化的基础教程,动手才能成长,快拿去练手吧~记得关注、转发+收藏。
--END--
欢迎大家关注我们的公众号:为AI呐喊(weainahan)
相关推荐
- 其实TensorFlow真的很水无非就这30篇熬夜练
-
好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...
- 交叉验证和超参数调整:如何优化你的机器学习模型
-
准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...
- 机器学习交叉验证全指南:原理、类型与实战技巧
-
机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...
- 深度学习中的类别激活热图可视化
-
作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...
- 超强,必会的机器学习评估指标
-
大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...
- 机器学习入门教程-第六课:监督学习与非监督学习
-
1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...
- Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置
-
你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...
- 神经网络与传统统计方法的简单对比
-
传统的统计方法如...
- 自回归滞后模型进行多变量时间序列预测
-
下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...
- 苹果AI策略:慢哲学——科技行业的“长期主义”试金石
-
苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...
- 时间序列预测全攻略,6大模型代码实操
-
如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)