百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

PyTorch模型训练与评估(pytorch模型优化)

ztj100 2025-01-29 19:16 29 浏览 0 评论

前言

一旦模型、数据集、损失函数和优化器准备完成后,我们就可以开始训练模型了。在本节中,我们将学习如何正确训练和评估深度学习模型。

模型训练与评估

我们首先编写用于批 (batch) 处理、时期 (epoch) 处理和训练模型的辅助函数。

1. 编写辅助函数计算每批数据的损失值:

python
复制代码
def loss_batch(loss_func, xb, yb,yb_h, opt=None):
    loss = loss_func(yb_h, yb)
    metric_b = metrics_batch(yb,yb_h)
    if opt is not None:
        loss.backward()
        opt.step()
        opt.zero_grad()
    return loss.item(), metric_b

2. 接下来,定义一个辅助函数来计算模型在每批数据上的准确率:

python
复制代码
def metrics_batch(target, output):
    pred = output.argmax(dim=1, keepdim=True)
    corrects=pred.eq(target.view_as(pred)).sum().item()
    return corrects

3. 接下来,定义一个辅助函数来计算数据集的损失和度量值:

python
复制代码
def loss_epoch(model,loss_func,dataset_dl,opt=None):
    loss=0.0
    metric=0.0
    len_data=len(dataset_dl.dataset)
    for xb, yb in dataset_dl:
        xb=xb.type(torch.float).to(device)
        yb=yb.to(device)
        yb_h=model(xb)
        loss_b,metric_b=loss_batch(loss_func, xb, yb,yb_h, opt)
        loss+=loss_b
        if metric_b is not None:
            metric+=metric_b
    loss/=len_data
    metric/=len_data
    return loss, metric

4. 最后,定义 train_val 函数用于评估模型性能:

python
复制代码
def train_val(epochs, model, loss_func, opt, train_dl, val_dl):
    for epoch in range(epochs):
        model.train()
        train_loss, train_metric=loss_epoch(model,loss_func,train_dl,opt)
        model.eval()
        with torch.no_grad():
            val_loss, val_metric=loss_epoch(model,loss_func,val_dl)
        accuracy=100*val_metric
        print("epoch: %d, train loss: %.6f, val loss: %.6f, accuracy: %.2f" %(epoch, train_loss,val_loss,accuracy))

5. 训练模型数个 epoch

python
复制代码
num_epochs=5
train_val(num_epochs, model, loss_func, opt, train_dl, val_dl)

训练开始后,可以看到模型训练过程中损失和性能变化:

shell
复制代码
epoch: 0, train loss: 0.22345, val loss: 0.094503, accuracy: 96.94
...
epoch: 5, train loss: 0.02345, val loss: 0.049503, accuracy: 98.02

存储和加载模型

训练完成后,我们可以将训练后的参数存储在文件中以供部署和之后加载使用,有两种常见的保存模型的方法。

首先,我们介绍第一种方法。

1. 首先,将模型参数或 state_dict 存储在文件中:

python
复制代码
path2weights="./models/weights.pt"
torch.save(model.state_dict(), path2weights)

2. 要从文件中加载模型参数,需要定义一个 Net 类的对象:

python
复制代码
_model = Net()

3. 然后,从文件中加载 state_dict

python
复制代码
weights=torch.load(path2weights)

4. 接下来,将 state_dict 设置为模型参数:

python
复制代码
_model.load_state_dict(weights)

接下来,我们继续学习第二种方法。

1. 首先,将模型存储在一个文件中:

python
复制代码
path2model="./models/model.pt"
torch.save(model,path2model)

2. 要从文件中加载模型参数,首先将定义一个 Net 类的对象:

python
复制代码
_model = Net()

3. 然后,从本地文件中加载模型:

python
复制代码
_model=torch.load(path2model)

在本小节中,我们学习了两种存储训练模型的方法。在第一种方法中,我们只存储了 state_dict 或模型参数。当我们需要训练好的模型进行部署时,我们必须创建模型的对象,然后从文件中加载参数,然后将参数设置到模型中,这种方式是 PyTorch 推荐的方法。

在第二种方法中,我们将模型存储到一个文件中,即我们将模型和 state_dict 都存储在一个文件中。当我们需要训练好的模型进行部署时,我们都需要创建一个 Net 类对象。然后,我们从文件中加载模型。因此,与第一种方法相比并没有实际的优势。

部署模型

要部署模型,我们需要使用上一小节中介绍的方法加载模型。一旦模型被加载到内存中,我们就可以将新数据传递给模型,利用模型进行预测。

1. 要将模型部署在验证数据集中的样本图像上,我们首先加载一个样本张量:

python
复制代码
n=100
x= x_val[n]
y=y_val[n]
print(x.shape)

2. 然后,对样本张量进行预处理:

python
复制代码
x= x.unsqueeze(0)
x=x.type(torch.float)
x=x.to(device)

3. 接下来,使用加载完成的神经网络模型获取预测结果:

python
复制代码
output=_model(x)
pred = output.argmax(dim=1, keepdim=True)
print (pred.item(),y.item())

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: