百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

C++11很吊的新特性!std::function

ztj100 2025-01-14 19:12 21 浏览 0 评论

std::function简介

std::function是一个函数包装器,该函数包装器模板能包装任何类型的可调用实体,如普通函数,函数对象,lamda表达式等。包装器可拷贝,移动等,并且包装器类型仅仅依赖于调用特征,而不依赖于可调用元素自身的类型。std::function是C++11的新特性,包含在头文件<functional>中。

一个std::function类型对象实例可以包装下列这几种可调用实体:函数、函数指针、成员函数、静态函数、lamda表达式和函数对象。std::function对象实例可被拷贝和移动,并且可以使用指定的调用特征来直接调用目标元素。当std::function对象实例未包含任何实际可调用实体时,调用该std::function对象实例将抛出std::bad_function_call异常。

std::function实战

std::function模板类声明

template<class _Rp, class ..._ArgTypes>
class _LIBCPP_TEMPLATE_VIS function<_Rp(_ArgTypes...)>
    : public __function::__maybe_derive_from_unary_function<_Rp(_ArgTypes...)>,
      public __function::__maybe_derive_from_binary_function<_Rp(_ArgTypes...)>
{ ... }

std::function模板类成员函数声明

typedef _Rp result_type;

    // construct/copy/destroy:
    _LIBCPP_INLINE_VISIBILITY
    function() _NOEXCEPT { }
    _LIBCPP_INLINE_VISIBILITY
    function(nullptr_t) _NOEXCEPT {}
    function(const function&);
    function(function&&) _NOEXCEPT;
    template<class _Fp, class = _EnableIfCallable<_Fp>>
    function(_Fp);

#if _LIBCPP_STD_VER <= 14
    template<class _Alloc>
      _LIBCPP_INLINE_VISIBILITY
      function(allocator_arg_t, const _Alloc&) _NOEXCEPT {}
    template<class _Alloc>
      _LIBCPP_INLINE_VISIBILITY
      function(allocator_arg_t, const _Alloc&, nullptr_t) _NOEXCEPT {}
    template<class _Alloc>
      function(allocator_arg_t, const _Alloc&, const function&);
    template<class _Alloc>
      function(allocator_arg_t, const _Alloc&, function&&);
    template<class _Fp, class _Alloc, class = _EnableIfCallable<_Fp>>
      function(allocator_arg_t, const _Alloc& __a, _Fp __f);
#endif

    function& operator=(const function&);
    function& operator=(function&&) _NOEXCEPT;
    function& operator=(nullptr_t) _NOEXCEPT;
    template<class _Fp, class = _EnableIfCallable<_Fp>>
    function& operator=(_Fp&&);

    ~function();

    // function modifiers:
    void swap(function&) _NOEXCEPT;

#if _LIBCPP_STD_VER <= 14
    template<class _Fp, class _Alloc>
      _LIBCPP_INLINE_VISIBILITY
      void assign(_Fp&& __f, const _Alloc& __a)
        {function(allocator_arg, __a, _VSTD::forward<_Fp>(__f)).swap(*this);}
#endif

    // function capacity:
    _LIBCPP_INLINE_VISIBILITY
    _LIBCPP_EXPLICIT operator bool() const _NOEXCEPT {
      return static_cast<bool>(__f_);
    }

    // deleted overloads close possible hole in the type system
    template<class _R2, class... _ArgTypes2>
      bool operator==(const function<_R2(_ArgTypes2...)>&) const = delete;
    template<class _R2, class... _ArgTypes2>
      bool operator!=(const function<_R2(_ArgTypes2...)>&) const = delete;
public:
    // function invocation:
    _Rp operator()(_ArgTypes...) const;

#ifndef _LIBCPP_NO_RTTI
    // function target access:
    const std::type_info& target_type() const _NOEXCEPT;
    template <typename _Tp> _Tp* target() _NOEXCEPT;
    template <typename _Tp> const _Tp* target() const _NOEXCEPT;
#endif  // _LIBCPP_NO_RTTI

从成员函数里我们知道std::function对象实例不允许进行==和!=比较操作,std::function模板类实例最终调用成员函数_Rp operator()(_ArgTypes...) const进而调用包装的调用实体。

1、std::function包装函数指针

定义一个std::function<int(int)>对象实例

std::function<int(int)> callback;

std::function对象实例包装函数指针

int (*fun_ptr)(int);

int fun1(int a){
    return a;
}

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    fun_ptr = fun1; //函数指针fun_ptr指向fun1函数
    callback = fun_ptr; //std::function对象包装函数指针
    std::cout << callback(10) << std::endl; //std::function对象实例调用包装的实体

    return 0;
}

2、std::function包装函数

int fun1(int a){
    return a;
}

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    callback = fun1; //std::function包装函数
    std::cout << callback(42) << std::endl; //std::function对象实例调用包装的调用实体

    return 0;
}

3、std::function包装模板函数

template<typename T>
T fun2(T a){
    return a + 2;
}

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    callback = fun2<int>; //std::function包装模板函数
    std::cout << callback(10) << std::endl; //std::function对象实例调用包装的调用实体

    return 0;
}

4、std::function包装函数对象

struct add{
    int operator()(int x){
        return x + 9;
    }
};

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    callback = add(); //std::function包装对象函数
    std::cout << callback(2) << std::endl; //std::function对象实例调用包装的调用实体

    return 0;
}

5、std::function包装lamda表达式

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    auto fun3 = [](int a) {return a * 2;}; //lamda表达式
    callback = fun3; //std::function包装lamda表达式
    std::cout << callback(9) << std::endl; //std::function对象实例调用包装的调用实体

    return 0;
}

6、std::function包装模板对象函数

template <typename T>
struct sub{
    T operator()(T a){
        return a - 8;
    }
};

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    callback = sub<int>(); //std::function包装模板对象函数
    std::cout << callback(2) << std::endl; //std::function对象实例调用包装的调用实体

    return 0;
}

7、std::function包装模板对象静态函数

template <typename T>
struct foo2{
    static T foo(T a){
        return a * 4;
    }
};

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    callback = foo2<int>::foo; //std::function包装模板对象静态函数
    std::cout << callback(3) << std::endl; //std::function对象实例调用包装的调用实体

    return 0;
}

8、std::function包装对象静态函数

struct foo1{
    static int foo(int a){
        return a * 3;
    }
};

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    callback = foo1::foo; //std::function包装对象静态函数
    std::cout << callback(5) << std::endl; //std::function对象实例调用包装的调用实体

    return 0;
}

9、std::function包装类成员函数

struct foo3{
    int foo(int a){
        return a * a;
    }
};

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    foo3 test_foo1;
    callback = std::bind(&foo3::foo, test_foo1, std::placeholders::_1); //std::function包装类成员函数
    std::cout << callback(9) << std::endl; //std::function对象实例调用包装的调用实体

    return 0;
}

这里我们用到了std::bind,C++11中std::bind函数的意义就如字面上的意思一样,用来绑定函数调用的某些参数。std::bind的思想其实是一种延迟计算的思想,将可调用对象保存起来,然后在需要的时候再调用。而且这种绑定是非常灵活的,不论是普通函数还是函数对象还是成员函数都可以绑定,而且其参数可以支持占位符。

这里的std::placeholders::_1是一个占位符,且绑定第一个参数,若可调用实体有2个形参,那么绑定第二个参数的占位符是std::placeholders::_2。

10、std::function包装模板类成员函数


template <typename T>
struct foo4{
    T foo(T a){
        return a * 6;
    }
};

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    foo4<int> test_foo2;
    callback = std::bind(&foo4<int>::foo, test_foo2, std::placeholders::_1); //std::function包装模板类成员函数
    std::cout << callback(7) << std::endl; //std::function对象实例调用包装的调用实体

    return 0;
}

11、std::function拷贝、移动

int main(int argc, char *argv[]){
    std::cout << "Hello world" << std::endl;

    std::function<int(int)> callback2 = callback; //拷贝赋值运算符
    std::cout << callback2(7) << std::endl;

    std::function<int(int)>&& callback3 = std::move(callback); //移动赋值运算符
    std::cout << callback3(7) << std::endl;
    std::cout << callback(7) << std::endl;

    std::function<int(int)> callback4(callback); //拷贝
    std::cout << callback4(7) << std::endl;

    return 0;
}

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: