百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

魔法一样隔空在屏幕写字,捏起手指就能实现!在线可玩

ztj100 2025-01-13 19:18 17 浏览 0 评论

兴坤 发自 凹非寺

量子位 报道 | 公众号 QbitAI

空中画符的中二技能,谁不想拥有呢?

不如捏一只万能的AI来当魔法画笔吧。

这是一个用来写写画画的手部跟踪程序,开发者将它命名为YoHaYour Hand Tracking)。

这个程序基于TensorFlow.js实现了实时识别功能,能达到不卡顿、无延迟的效果。

捏起手指就可以变成画笔,清空画布也只需握拳就能办到。

用YoHa给自己画特效的效果这么好,难怪可以获得555颗星。

这只AI怎么玩?

这款手势识别程序已经开源,开发者Benjamin大方地提供给了所有人使用“魔法”的机会。

既可以安装在自己的电脑上来玩,一行代码就能轻松实现。

npm install @handtracking.io/yoha

也可以在线试玩,直接用网页下载模型写写画画。

虽然YoHa目前只能对捏手指和握拳两个指令动作做出功能响应,但是因为有TensorFlow.js加持,它的性能可一点都不低。

21个手部关节定位,左右手方向检测,手部姿势检测等都可以实时实现。

来看看“买家秀”是不是也一样秀。

原来成为不了法师只是因为符文画太丑

如此好玩的AI背后,究竟是什么原理呢?

YoHa模型使用TensorFlow.js深度学习框架来进行从头训练,开发过程包含了训练步骤和推理步骤两大部分。

它的模型训练阶段利用了自定义神经网络,以自定义数据集作为训练数据,而在线实时推理则用到了TensorFlow.js推理框架。

不过,因为TensorFlow.js规模的限制,比起电脑,YoHa在移动设备上的表现较差。

另外,YoHa的本地运行速度也比在线试玩快很多,果然驯服AI还是得先带回家里养。

手势识别有什么用?

YoHa的开发者Benjamin提到,制作这个项目一开始是为了增加网络的互动性:

“现有的解决方案没有我想要的,所以我给自己创建了新的解决方案”

不愧是动手能力强的大佬,没有自己想要的,那就自己造一个。

手势识别这么火,干脆多开发一些玩法,添加更丰富的功能让VR/AR更好玩。

针对之前提到的YoHa性能缺陷,Benjamin也给玩家提供了高性能备选方案:通用手势识别模型MediaPipe。

如果高端玩家对性能有更高追求,可以在这个经典模型基础上进行功能扩展。

比如不久前以MediaPipe为基础开发的类似项目air-drawing,在玩法上和YoHa稍有不同。

感兴趣的话,自己去驯服一只AI来写字画画吧。

GitHub地址:
https://github.com/handtracking-io/yoha

试玩地址:
https://handtracking.io/draw_demo/

https://loicmagne.github.io/air-drawing/

— 完 —

量子位 QbitAI · 头条号签约

关注我们,第一时间获知前沿科技动态

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: