百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

你还弄不懂的傅里叶变换,神经网络只用了30多行代码就学会了

ztj100 2024-10-28 21:15 16 浏览 0 评论

明敏 发自 凹非寺
量子位 报道 | 公众号 QbitAI

在我们的生活中,大到天体观测、小到MP3播放器上的频谱,没有傅里叶变换都无法实现。

通俗来讲,离散傅里叶变换(DFT)就是把一串复杂波形中分成不同频率成分。

比如声音,如果用声波记录仪显示声音的话,其实生活中绝大部分声音都是非常复杂、甚至杂乱无章的。

而通过傅里叶变换,就能把这些杂乱的声波转化为正弦波,也就是我们平常看到的音乐频谱图的样子。

不过在实际计算中,这个过程其实非常复杂。

如果把声波视作一个连续函数,它可以唯一表示为一堆三角函数相叠加。不过在叠加过程中,每个三角函数的加权系数不同,有的要加高一些、有的要压低一些,有的甚至不加。

傅里叶变换要找到这些三角函数以及它们各自的权重。

这不就巧了,这种找啊找的过程,像极了神经网络

神经网络的本质其实就是逼近一个函数。

那岂不是可以用训练神经网络的方式来搞定傅里叶变换?

这还真的可行,并且最近有人在网上发布了自己训练的过程和结果。

DFT=神经网络

该怎么训练神经网络呢?这位网友给出的思路是这样的:

首先要把离散傅里叶变换(DFT)看作是一个人工神经网络,这是一个单层网络,没有bias、没有激活函数,并且对于权重有特定的值。它输出节点的数量等于傅里叶变换计算后频率的数量。

具体方法如下:

这是一个DFT:

  • k表示每N个样本的循环次数;
  • N表示信号的长度;
  • 表示信号在样本n处的值。

一个信号可以表示为所有正弦信号的和。

yk是一个复值,它给出了信号x中频率为k的正弦信号的信息;从yk我们可以计算正弦的振幅和相位。

换成矩阵式,它就变成了这样:

这里给出了特定值k的傅里叶值。

不过通常情况下,我们要计算全频谱,即k从[0,1,…N-1]的值,这可以用一个矩阵来表示(k按列递增,n按行递增):

简化后得到:

看到这里应该还很熟悉,因为它是一个没有bias和激活函数的神经网络层。

指数矩阵包含权值,可以称之为复合傅里叶权值(Complex Fourier weights),通常情况下我们并不知道神经网络的权重,不过在这里可以。

  • 不用复数

通常我们也不会在神经网络中使用复数,为了适应这种情况,就需要把矩阵的大小翻倍,使其左边部分包含实数,右边部分包含虚数。

带入DFT,可以得到:

然后用实部(cos形式)来表示矩阵的左半部分,用虚部(sin形式)来表示矩阵的右半部分:

简化后可以得到:

称为傅里叶权重

需要注意的是,y^和y实际上包含相同的信息,但是y^

不使用复数,所以它的长度是y的两倍。

换句话说,我们可以用

表示振幅和相位,但是我们通常会使用

现在,就可以将傅里叶层加到网络中了。

用傅里叶权重计算傅里叶变换

现在就可以用神经网络来实现

,并用快速傅里叶变换(FFT)检查它是否正确。

import matplotlib.pyplot as plt


y_real = y[:, :signal_length]
y_imag = y[:, signal_length:]
tvals = np.arange(signal_length).reshape([-1, 1])
freqs = np.arange(signal_length).reshape([1, -1])
arg_vals = 2 * np.pi * tvals * freqs / signal_length
sinusoids = (y_real * np.cos(arg_vals) - y_imag * np.sin(arg_vals)) / signal_length
reconstructed_signal = np.sum(sinusoids, axis=1)


print('rmse:', np.sqrt(np.mean((x - reconstructed_signal)**2)))
plt.subplot(2, 1, 1)
plt.plot(x[0,:])
plt.title('Original signal')
plt.subplot(2, 1, 2)
plt.plot(reconstructed_signal)
plt.title('Signal reconstructed from sinusoids after DFT')
plt.tight_layout()
plt.show()
rmse: 2.3243522568191728e-15

得到的这个微小误差值可以证明,计算的结果是我们想要的。

  • 另一种方法是重构信号
import matplotlib.pyplot as plt


y_real = y[:, :signal_length]
y_imag = y[:, signal_length:]
tvals = np.arange(signal_length).reshape([-1, 1])
freqs = np.arange(signal_length).reshape([1, -1])
arg_vals = 2 * np.pi * tvals * freqs / signal_length
sinusoids = (y_real * np.cos(arg_vals) - y_imag * np.sin(arg_vals)) / signal_length
reconstructed_signal = np.sum(sinusoids, axis=1)


print('rmse:', np.sqrt(np.mean((x - reconstructed_signal)**2)))
plt.subplot(2, 1, 1)
plt.plot(x[0,:])
plt.title('Original signal')
plt.subplot(2, 1, 2)
plt.plot(reconstructed_signal)
plt.title('Signal reconstructed from sinusoids after DFT')
plt.tight_layout()
plt.show()
rmse: 2.3243522568191728e-15

最后可以看到,DFT后从正弦信号重建的信号和原始信号能够很好地重合。

通过梯度下降学习傅里叶变换

现在就到了让神经网络真正来学习的部分,这一步就不需要向之前那样预先计算权重值了。

首先,要用FFT来训练神经网络学习离散傅里叶变换:

import tensorflow as tf


signal_length = 32


# Initialise weight vector to train:
W_learned = tf.Variable(np.random.random([signal_length, 2 * signal_length]) - 0.5)


# Expected weights, for comparison:
W_expected = create_fourier_weights(signal_length)


losses = []
rmses = []


for i in range(1000):
    # Generate a random signal each iteration:
    x = np.random.random([1, signal_length]) - 0.5
    
    # Compute the expected result using the FFT:
    fft = np.fft.fft(x)
    y_true = np.hstack([fft.real, fft.imag])
    
    with tf.GradientTape() as tape:
        y_pred = tf.matmul(x, W_learned)
        loss = tf.reduce_sum(tf.square(y_pred - y_true))
    
    # Train weights, via gradient descent:
    W_gradient = tape.gradient(loss, W_learned)    
    W_learned = tf.Variable(W_learned - 0.1 * W_gradient)


    losses.append(loss)
    rmses.append(np.sqrt(np.mean((W_learned - W_expected)**2)))
Final loss value 1.6738563548424711e-09
Final weights' rmse value 3.1525832404710523e-06

得出结果如上,这证实了神经网络确实能够学习离散傅里叶变换。

训练网络学习DFT

除了用快速傅里叶变化的方法,还可以通过网络来重建输入信号来学习DFT。(类似于autoencoders自编码器)。

自编码器(autoencoder, AE)是一类在半监督学习和非监督学习中使用的人工神经网络(Artificial Neural Networks, ANNs),其功能是通过将输入信息作为学习目标,对输入信息进行表征学习(representation learning)。

W_learned = tf.Variable(np.random.random([signal_length, 2 * signal_length]) - 0.5)


tvals = np.arange(signal_length).reshape([-1, 1])
freqs = np.arange(signal_length).reshape([1, -1])
arg_vals = 2 * np.pi * tvals * freqs / signal_length
cos_vals = tf.cos(arg_vals) / signal_length
sin_vals = tf.sin(arg_vals) / signal_length


losses = []
rmses = []


for i in range(10000):
    x = np.random.random([1, signal_length]) - 0.5
    
    with tf.GradientTape() as tape:
        y_pred = tf.matmul(x, W_learned)
        y_real = y_pred[:, 0:signal_length]
        y_imag = y_pred[:, signal_length:]
        sinusoids = y_real * cos_vals - y_imag * sin_vals
        reconstructed_signal = tf.reduce_sum(sinusoids, axis=1)
        loss = tf.reduce_sum(tf.square(x - reconstructed_signal))


    W_gradient = tape.gradient(loss, W_learned)    
    W_learned = tf.Variable(W_learned - 0.5 * W_gradient)


    losses.append(loss)
    rmses.append(np.sqrt(np.mean((W_learned - W_expected)**2)))
Final loss value 4.161919455121241e-22
Final weights' rmse value 0.20243339269590094

作者用这一模型进行了很多测试,最后得到的权重不像上面的例子中那样接近傅里叶权值,但是可以看到重建的信号是一致的。

换成输入振幅和相位试试看呢。

W_learned = tf.Variable(np.random.random([signal_length, 2 * signal_length]) - 0.5)


losses = []
rmses = []


for i in range(10000):
    x = np.random.random([1, signal_length]) - .5
    
    with tf.GradientTape() as tape:
        y_pred = tf.matmul(x, W_learned)
        y_real = y_pred[:, 0:signal_length]
        y_imag = y_pred[:, signal_length:]
        amplitudes = tf.sqrt(y_real**2 + y_imag**2) / signal_length
        phases = tf.atan2(y_imag, y_real)
        sinusoids = amplitudes * tf.cos(arg_vals + phases)
        reconstructed_signal = tf.reduce_sum(sinusoids, axis=1)
        loss = tf.reduce_sum(tf.square(x - reconstructed_signal))


    W_gradient = tape.gradient(loss, W_learned)
    W_learned = tf.Variable(W_learned - 0.5 * W_gradient)


    losses.append(loss)
    rmses.append(np.sqrt(np.mean((W_learned - W_expected)**2)))
Final loss value 2.2379359316633115e-21
Final weights' rmse value 0.2080118219691059

可以看到,重建信号再次一致;

不过,和此前一样,输入振幅和相位最终得到的权值也不完全等同于傅里叶权值(但非常接近)。

由此可以得出结论,虽然最后得到的权重还不是最准确的,但是也能够获得局部的最优解

这样一来,神经网络就学会了傅里叶变换!

  • 值得一提的是,这个方法目前还有疑问存在:

首先,它没有解释计算出的权值和真正的傅里叶权值相差多少;

而且,也没有说明将傅里叶层放到模型中能带来哪些益处。

原文链接:
https://sidsite.com/posts/fourier-nets/

— 完 —

量子位 QbitAI · 头条号签约

关注我们,第一时间获知前沿科技动态

相关推荐

如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL

阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...

Python数据分析:探索性分析

写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...

CSP-J/S冲奖第21天:插入排序

...

C++基础语法梳理:算法丨十大排序算法(二)

本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...

C 语言的标准库有哪些

C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...

[深度学习] ncnn安装和调用基础教程

1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...

用rust实现经典的冒泡排序和快速排序

1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...

ncnn+PPYOLOv2首次结合!全网最详细代码解读来了

编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...

C++特性使用建议

1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...

Qt4/5升级到Qt6吐血经验总结V202308

00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...

到底什么是C++11新特性,请看下文

C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...

掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!

C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...

经典算法——凸包算法

凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...

一起学习c++11——c++11中的新增的容器

c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...

C++ 编程中的一些最佳实践

1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...

取消回复欢迎 发表评论: