手把手教你如何进行 Golang 单元测试
ztj100 2025-01-10 18:40 15 浏览 0 评论
引入
随着工程化开发的内大力的推广,单元测试越来越受到广大开发者的重视。在学习的过程中,发现网上针对 Golang 单元测试大多从理论角度出发介绍,缺乏完整的实例说明,晦涩难懂的 API 让初学接触者难以下手。
本篇不准备大而全的谈论单元测试、笼统的介绍 Golang 的单测工具,而将从 Golang 单测的使用场景出发,以最简单且实际的例子讲解如何进行单测,最终由浅入深探讨 go 单元测试的两个比较细节的问题。
在阅读本文时,请务必对 Golang 的单元测试有最基本的了解。
一段需要单测的 Golang 代码
package unit
import (
"encoding/json"
"errors"
"github.com/gomodule/redigo/redis"
"regexp"
)
type PersonDetail struct {
Username string `json:"username"`
Email string `json:"email"`
}
// 检查用户名是否非法
func checkUsername(username string) bool {
const pattern = `^[a-z0-9_-]{3,16}?手把手教你如何进行 Golang 单元测试 - 今日头条
reg := regexp.MustCompile(pattern)
return reg.MatchString(username)
}
// 检查用户邮箱是否非法
func checkEmail(email string) bool {
const pattern = `^[a-zA-Z0-9_-]+@[a-zA-Z0-9_-]+(\.[a-zA-Z0-9_-]+)+?手把手教你如何进行 Golang 单元测试 - 今日头条
reg := regexp.MustCompile(pattern)
return reg.MatchString(email)
}
// 通过 redis 拉取对应用户的资料信息
func getPersonDetailRedis(username string) (*PersonDetail, error) {
result := &PersonDetail{}
client, err := redis.Dial("tcp", ":6379")
defer client.Close()
data, err := redis.Bytes(client.Do("GET", username))
if err != nil {
return nil, err
}
err = json.Unmarshal(data, result)
if err != nil {
return nil, err
}
return result, nil
}
// 拉取用户资料信息并校验
func GetPersonDetail(username string) (*PersonDetail, error) {
// 检查用户名是否有效
if ok := checkUsername(username); !ok {
return nil, errors.New("invalid username")
}
// 从 redis 接口获取信息
detail, err := getPersonDetailRedis(username)
if err != nil {
return nil, err
}
// 校验
if ok := checkEmail(detail.Email); !ok {
return nil, errors.New("invalid email")
}
return detail, nil
}这是一段典型的有 I/O 的功能代码,主体功能是传入用户名,校验合法性之后通过 redis 获取信息,之后校验获取值内容的合法性后并返回。
后台服务单测场景
对于一个传统的后端服务,它主要有以下几点的职责和功能:
- 接收外部请求,controller 层分发请求、校验请求参数
- 请求有效分发后,在 service 层与 dao 层进行交互后做逻辑处理
- dao 层负责数据操作,主要是数据库或持久化存储相关的操作
因此,从职责出发来看,在做后台单测中,核心主要是验证 service 层和 dao 层的相关逻辑,此外 controller 层的参数校验也在单测之中。
细分来看,对于相关逻辑的单元测试,笔者倾向于把单测分为两种:
- 无第三方依赖,纯逻辑代码
- 有第三方依赖,如文件、网络 I/O、第三方依赖库、数据库操作相关的代码
注:单元测试中只是针对单个函数的测试,关注其内部的逻辑,对于网络/数据库访问等,需要通过相应的手段进行 mock。
Golang 单测工具选型
由于我们把单测简单的分为了两种:
- 对于无第三方依赖的纯逻辑代码,我们只需要验证相关逻辑即可,这里只需要使用 assert (断言),通过控制输入输出比对结果即可。
- 对于有第三方依赖的代码,在验证相关代码逻辑之前,我们需要将相关的依赖 mock (模拟),之后才能通过断言验证逻辑。这里需要借助第三方工具库来处理。
因此,对于 assert (断言)工具,可以选择 testify 或 convery,笔者这里选择了 testify。对于 mock (模拟)工具,笔者这里选择了 gomock 和 gomonkey。关于 mock 工具同时使用 gomock 和 gomonkey,这里跟 Golang 的语言特性有关,下面会详细的说明。
完善测试用例
这里我们开始对示例代码中的函数做单元测试。
生成单测模板代码
首先在 Goland 中打开项目,加载对应文件后右键找到 Generate 项,点击后选择 Tests for package,之后生成以 _test.go 结尾的单测文件。(如果想针对某一特定函数做单测,请选择对应的函数后右键选定 Generate 项执行 Tests for selection。)
这里展示通过 IDE 生成的 TestGetPersonDetail 测试函数:
package unit
import (
"reflect"
"testing"
)
func TestGetPersonDetail(t *testing.T) {
type args struct {
username string
}
tests := []struct {
name string
args args
want *PersonDetail
wantErr bool
}{
// TODO: Add test cases.
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got, err := GetPersonDetail(tt.args.username)
if (err != nil) != tt.wantErr {
t.Errorf("GetPersonDetail() error = %v, wantErr %v", err, tt.wantErr)
return
}
if !reflect.DeepEqual(got, tt.want) {
t.Errorf("GetPersonDetail() got = %v, want %v", got, tt.want)
}
})
}
}
由 Goland 生成的单测模板代码使用的是官方的 testing 框架,为了更方便的断言,我们把 testing 改造成 testify 的断言方式。
这里其实只需要引入 testify 后修改 test 函数最后的断言代码即可,这里我们以 TestGetPersonDetail 为例子,其他函数不赘述。
package unit
import (
"github.com/stretchr/testify/assert" // 这里引入了 testify
"reflect"
"testing"
)
func TestGetPersonDetail(t *testing.T) {
type args struct {
username string
}
tests := []struct {
name string
args args
want *PersonDetail
wantErr bool
}{
// TODO: Add test cases.
}
for _, tt := range tests {
got, err := GetPersonDetail(tt.args.username)
// 改写这里断言的方式即可
assert.Equal(t, tt.want, got)
assert.Equal(t, tt.wantErr, err != nil)
}
}
分析代码生成测试用例
对 checkUsername 、 checkEmail 纯逻辑函数编写测试用例,这里以 checkEmail 为例。
func Test_checkEmail(t *testing.T) {
type args struct {
email string
}
tests := []struct {
name string
args args
want bool
}{
{
name: "email valid",
args: args{
email: "1234567@qq.com",
},
want: true,
},
{
name: "email invalid",
args: args{
email: "test.com",
},
want: false,
},
}
for _, tt := range tests {
got := checkEmail(tt.args.email)
assert.Equal(t, tt.want, got)
}
}
使用 gomonkey 打桩
对于 GetPersonDetail 函数而言,该函数调用了 getPersonDetailRedis 函数获取具体的 PersonDetail 信息。为此,我们需要为它打一个“桩”。
所谓的“桩”,也叫做“桩代码”,是指用来代替关联代码或者未实现代码的代码。
对于函数、成员方法或者是变量的打桩,我们通常使用 gomonkey 来进行打桩。具体 API 请参考:https://pkg.go.dev/github.com/agiledragon/gomonkey
// 拉取用户资料信息并校验
func GetPersonDetail(username string) (*PersonDetail, error) {
// 检查用户名是否有效
if ok := checkUsername(username); !ok {
return nil, errors.New("invalid username")
}
// 从 redis 接口获取信息
detail, err := getPersonDetailRedis(username)
if err != nil {
return nil, err
}
// 校验
if ok := checkEmail(detail.Email); !ok {
return nil, errors.New("invalid email")
}
return detail, nil
}
从 GetPersonDetail 函数可见,为了能够完全覆盖该函数,我们需要控制 getPersonDetailRedis 函数不同的输出来保证后续代码都能够被覆盖运行到。因此,这里需要使用 gomonkey 来给 getPersonDetailRedis 函数打一个“桩序列”。
所谓的函数“桩序列”指的是提前指定好调用函数的返回值序列,当该函数多次调用时候,能够按照原先指定的返回值序列依次返回。
func TestGetPersonDetail(t *testing.T) {
type args struct {
username string
}
tests := []struct {
name string
args args
want *PersonDetail
wantErr bool
}{
{name: "invalid username", args: args{username: "steven xxx"}, want: nil, wantErr: true},
{name: "invalid email", args: args{username: "invalid_email"}, want: nil, wantErr: true},
{name: "throw err", args: args{username: "throw_err"}, want: nil, wantErr: true},
{name: "valid return", args: args{username: "steven"}, want: &PersonDetail{Username: "steven", Email: "12345678@qq.com"}, wantErr: false},
}
// 为函数打桩序列
// 使用 gomonkey 打函数桩序列
// 第一个用例不会调用 getPersonDetailRedis,所以只需要 3 个值
outputs := []gomonkey.OutputCell{
{
Values: gomonkey.Params{&PersonDetail{Username: "invalid_email", Email: "test.com"}, nil},
},
{
Values: gomonkey.Params{nil, errors.New("request err")},
},
{
Values: gomonkey.Params{&PersonDetail{Username: "steven", Email: "12345678@qq.com"}, nil},
},
}
patches := gomonkey.ApplyFuncSeq(getPersonDetailRedis, outputs)
// 执行完毕后释放桩序列
defer patches.Reset()
for _, tt := range tests {
got, err := GetPersonDetail(tt.args.username)
assert.Equal(t, tt.want, got)
assert.Equal(t, tt.wantErr, err != nil)
}
}
当使用桩序列时,要分析好单元测试用例和序列值的对应关系,保证最终被测试的代码块都能被完整覆盖。
使用 gomock 打桩
最后剩下 getPersonDetailRedis 函数,我们先来看一下这个函数的逻辑。
// 通过 redis 拉取对应用户的资料信息
func getPersonDetailRedis(username string) (*PersonDetail, error) {
result := &PersonDetail{}
client, err := redis.Dial("tcp", ":6379")
defer client.Close()
data, err := redis.Bytes(client.Do("GET", username))
if err != nil {
return nil, err
}
err = json.Unmarshal(data, result)
if err != nil {
return nil, err
}
return result, nil
}
getPersonDetailRedis 函数的核心在于生成了 client 调用了它的 Do 方法,通过分析得知 client 实际上是一个符合 Conn 接口的结构体。如果我们使用 gomonkey 来进行打桩,需要先声明一个结构体并实现 Client 接口拥有的方法,之后才能使用 gomonkey 给函数打桩。
// redis 包中关于 Conn 的定义
// Conn represents a connection to a Redis server.
type Conn interface {
// Close closes the connection.
Close() error
// Err returns a non-nil value when the connection is not usable.
Err() error
// Do sends a command to the server and returns the received reply.
Do(commandName string, args ...interface{}) (reply interface{}, err error)
// Send writes the command to the client's output buffer.
Send(commandName string, args ...interface{}) error
// Flush flushes the output buffer to the Redis server.
Flush() error
// Receive receives a single reply from the Redis server
Receive() (reply interface{}, err error)
}
// 实现接口
type Client struct {}
func (c *Client) Close() error {
return nil
}
func (c *Client) Err() error {
return nil
}
func (c *Client) Do(commandName string, args ...interface{}) (interface{}, error) {
return nil, nil
}
func (c *Client) Send(commandName string, args ...interface{}) error {
return nil
}
func (c *Client) Flush() error {
return nil
}
func (c *Client) Receive() (interface{}, error) {
return nil, nil
}
// 实现接口
type Client struct {}
func (c *Client) Close() error {
return nil
}
func (c *Client) Err() error {
return nil
}
func (c *Client) Do(commandName string, args ...interface{}) (interface{}, error) {
return nil, nil
}
func (c *Client) Send(commandName string, args ...interface{}) error {
return nil
}
func (c *Client) Flush() error {
return nil
}
func (c *Client) Receive() (interface{}, error) {
return nil, nil
}
// 进行测试
func test() {
c := &Client{}
gomonkey.ApplyFunc(redis.Dial, func(_ string, _ string, _ ...redis.DialOption) (redis.Conn, error) {
return c, nil
})
gomonkey.ApplyMethod(reflect.TypeOf(c), "Do", func(commandName string, args ...interface{}) (interface{}, error) {
var result interface{}
return result, nil
})
}
可见,如果接口实现的方法更多,那么打桩需要手写的代码会更多。因此这里需要一种能自动根据原接口的定义生成接口的 mock 代码以及更方便的接口 mock 方式。于是这里我们使用 gomock 来解决这个问题。
本地安装 gomock
# 打开终端后依次执行
go get -u github.com/golang/mock/gomock
go install github.com/golang/mock/mockgen
# 备注说明,很重要!!!
# 安装完成之后,执行 mockgen 看命令是否生效 # 如果显示命令无效,请找到本机的 GOPATH 安装目录下的 bin 文件夹是否有 mockgen 二进制文件
# GOPATH 可以执行 go env 命令找到
# 如果命令无效但是 GOPATH 路径下的 bin 文件夹中存在 mockgen,请将 GOPATH 下 bin 文件夹的绝对路径添加到全局 PATH 中
生成 gomock 桩代码
安装完毕后,找到要进行打桩的接口,这里是 github.com/gomodule/redigo/redis 包里面的 Conn 接口。
在当前代码目录下执行以下指令,这里我们只对某个特定的接口生成 mock 代码。
mockgen -destination=mock_redis.go -package=unit github.com/gomodule/redigo/redis Conn
# 更多指令参考:https://github.com/golang/mock#flags
生成的代码参考 mock_redis.go
完善 gomock 相关逻辑
func Test_getPersonDetailRedis(t *testing.T) {
tests := []struct {
name string
want *PersonDetail
wantErr bool
}{
{name: "redis.Do err", want: nil, wantErr: true},
{name: "json.Unmarshal err", want: nil, wantErr: true},
{name: "success", want: &PersonDetail{
Username: "steven",
Email: "1234567@qq.com",
}, wantErr: false},
}
ctrl := gomock.NewController(t)
defer ctrl.Finish()
// 1. 生成符合 redis.Conn 接口的 mockConn
mockConn := NewMockConn(ctrl)
// 2. 给接口打桩序列
gomock.InOrder(
mockConn.EXPECT().Do("GET", gomock.Any()).Return("", errors.New("redis.Do err")),
mockConn.EXPECT().Close().Return(nil),
mockConn.EXPECT().Do("GET", gomock.Any()).Return("123", nil),
mockConn.EXPECT().Close().Return(nil),
mockConn.EXPECT().Do("GET", gomock.Any()).Return([]byte(`{"username": "steven", "email": "1234567@qq.com"}`), nil),
mockConn.EXPECT().Close().Return(nil),
)
// 3. 给 redis.Dail 函数打桩
outputs := []gomonkey.OutputCell{
{
Values: gomonkey.Params{mockConn, nil},
Times: 3, // 3 个用例
},
}
patches := gomonkey.ApplyFuncSeq(redis.Dial, outputs)
// 执行完毕之后释放桩序列
defer patches.Reset()
// 4. 断言
for _, tt := range tests {
actual, err := getPersonDetailRedis(tt.name)
// 注意,equal 函数能够对结构体进行 deap diff
assert.Equal(t, tt.want, actual)
assert.Equal(t, tt.wantErr, err != nil)
}
}
从上面可以看到,给 getPersonDetailRedis 函数做单元测试主要做了四件事情:
- 生成符合 redis.Conn 接口的 mockConn
- 给接口打桩序列
- 给函数 redis.Dial 打桩
- 断言
这里面同时使用了 gomock、gomonkey 和 testify 三个包作为压测工具,日常使用中,由于复杂的调用逻辑带来繁杂的单测,也无外乎使用这三个包协同完成。
查看单测报告
单元测试编写完毕之后,我们可以调用相关的指令来查看覆盖范围,帮助我们查看单元测试是否已经完全覆盖逻辑代码,以便我们及时调整单测逻辑和用例。本文中完整的单测代码参考:get_person_detail_test.go
使用 go test 指令
默认情况下,我们在当前代码目录下执行 go test 指令,会自动的执行当前目录下面带 _test.go 后缀的文件进行测试。如若想展示具体的测试函数以及覆盖率,可以添加 -v 和 -cover 参数,如下所示:
?? go_unit_test [master] go test -v -cover
=== RUN TestGetPersonDetail
--- PASS: TestGetPersonDetail (0.00s)
=== RUN Test_checkEmail
--- PASS: Test_checkEmail (0.00s)
=== RUN Test_checkUsername
--- PASS: Test_checkUsername (0.00s)
=== RUN Test_getPersonDetailRedis
--- PASS: Test_getPersonDetailRedis (0.00s)
PASS
coverage: 60.8% of statements
ok unit 0.131s
如果想指定测试某一个函数,可以在指令后面添加 -run ${test文件内函数名} 来指定执行。
?? go_unit_test [master] go test -cover -v -run Test_getPersonDetailRedis
=== RUN Test_getPersonDetailRedis
--- PASS: Test_getPersonDetailRedis (0.00s)
PASS
coverage: 41.9% of statements
ok unit 0.369s
在执行 go test 命令时,需要加上 -gcflags=all=-l 防止编译器内联优化导致单测出现问题,这跟打桩代码存在密切的关系,后面我们会详细的介绍这一点。
因此,一个完整的单测指令可以是 go test -v -cover -gcflags=all=-l -coverprofile=coverage.out
生成覆盖报告
最后,我们可以执行 go tool cover -html=coverage.out ,查看代码的覆盖情况,使用前请先安装好 go tool 工具。
可以看到待测的代码覆盖率达到 100% 了,完整的代码仓库可以参考:https://github.com/xunan007/go_unit_test
关于 go test 更多的使用方法,可以参考:
https://golang.org/pkg/cmd/go/internal/test/
思考
上面我们已经详细的介绍了如何对 go 代码进行单元测试。下面探讨两个问题,帮助我们深入理解 go 单元测试的过程。
Q1:桩代码在单测中是如何执行的
在上面的案例中,针对 interface 我们通过 gomock 来帮我们自动生成符合接口的类后,只需要通过 gomock 约定的 API 就能够对 interface 中的函数按期望和需要来模拟,这个很好理解。
对于函数以及方法的 mock,由于本身代码逻辑已经声明好(go 是静态强类型语言),我们很难通过编码的方式将其 mock 掉,这对我们做单元测试提供了很大的挑战。实际上 gomonkey 提供了让我们在运行时替换原函数/方法的能力。虽然说我们在语言层面很难去替换运行中的函数体,但是本身代码最终都会转换成机器可以理解的汇编指令,我们可以通过创建指令来改写函数。
在 gomonkey 打桩的过程中,其核心函数其实是 ApplyCore。
func (this *Patches) ApplyCore(target, double reflect.Value) *Patches {
this.check(target, double)
if _, ok := this.originals[target]; ok {
panic("patch has been existed")
}
this.valueHolders[double] = double
original := replace(*(*uintptr)(getPointer(target)), uintptr(getPointer(double)))
this.originals[target] = original
return this
}
不管是对函数打桩还是对方法打桩,实际上最后都会调用这个 ApplyCore 函数。
在第 8 行的位置,获取到传入的原始函数和替换函数做了一个 replace 的操作,这里就是替换的逻辑所在了。
func replace(target, double uintptr) []byte {
code := buildJmpDirective(double)
bytes := entryAddress(target, len(code))
original := make([]byte, len(bytes))
copy(original, bytes)
modifyBinary(target, code)
return original
}
// 关键函数:构建跳转指令
func buildJmpDirective(double uintptr) []byte {
d0 := byte(double)
d1 := byte(double >> 8)
d2 := byte(double >> 16)
d3 := byte(double >> 24)
d4 := byte(double >> 32)
d5 := byte(double >> 40)
d6 := byte(double >> 48)
d7 := byte(double >> 56)
return []byte{
0x48, 0xBA, d0, d1, d2, d3, d4, d5, d6, d7, // MOV rdx, double
0xFF, 0x22, // JMP [rdx]
}
}
// 关键函数:重写目标函数
func modifyBinary(target uintptr, bytes []byte) {
function := entryAddress(target, len(bytes))
page := entryAddress(pageStart(target), syscall.Getpagesize())
err := syscall.Mprotect(page, syscall.PROT_READ|syscall.PROT_WRITE|syscall.PROT_EXEC)
if err != nil {
panic(err)
}
copy(function, bytes)
err = syscall.Mprotect(page, syscall.PROT_READ|syscall.PROT_EXEC)
if err != nil {
panic(err)
}
}
从上面的代码可以看出,buildJmpDirective 构建了一个函数跳转的指令,把目标函数指针移动到寄存器 rdx 中,然后跳转到寄存器 rdx 中函数指针指向的地址。之后通过 modifyBinary 函数,先通过 entryAddress 方法获取到原函数所在的内存地址,之后通过 syscall.Mprotect 方法打开内存保护,将函数跳转指令以 bytes 数组的形式调用 copy 方法写入到原函数所在内存之中,最终达到替换的目的。此外,这里 replace 方法还保留了原函数的副本,方便后续函数 mock 的恢复。
为什么 buildJmpDirective 要构建这样的跳转指令呢?这里只说结论,具体的推导过程可以参考:https://bou.ke/blog/monkey-patching-in-go
package main
func a() int { return 1 }
func main() {
f := a
f()
}
上面这段代码,a 是一个指向函数实体的指针,f 是指向函数 a 指针的指针。把上面函数的调用反汇编,能够看到操作寄存器的具体细节。( 如果对汇编不是很了解,可以先阅读 http://www.ruanyifeng.com/blog/2018/01/assembly-language-primer.html )
第一行,lea 为 load effective address,这里是将 f 变量这个值直接赋给 rdx 寄存器, f 变量的值是指向 a 函数的地址。
第二行,mov 表示移动,这里是取到内存地址为 rdx 的数据赋值给 rbx,此时内存地址 rbx 指向的刚好就是 a 函数。
最后,调用 rbx 里面的内容,其实也就是执行函数体。
因此,我们想改写函数,只要想办法把需要跳转的函数的地址加载到 rdx 寄存器中,之后使用指令跳转执行。
MOV rdx, double
JMP [rdx]
最终,把汇编指令翻译成 go 能够识别的版本。
这其实也是汇编里面很常见的热补丁,多用于进程中函数的替换。
Q2:执行 -gcflags=all=-l 具体有什么作用
-gcflags 用于在 go 编译构建时进行参数的传递,all 表示覆盖所有在 GOPATH 中的包,-l 表示禁止编译的内联优化。该指令可以防止编译时代码内联优化使得 mock 失败,最终导致执行单元测试不通过。下面我们具体来探讨一下“内联”以及给单元测试带来的影响。
通俗来讲,内联指的是把简短的函数在调用它的地方展开。由于函数调用有固定的开销(栈和抢占检查),在编译过程中,编译器可以针对代码进行内联,减少函数调用开销。内联优化是高性能编程的一种重要手段。
在 go 中,编译器不会对所有简单函数进行内联优化。go 在决策是否要对函数进行内联时有一个标准:函数体内包含:闭包调用,select ,for ,defer,go 关键字的的函数不会进行内联。并且除了这些,还有其它的限制。当解析 AST 时,Go 申请了 80 个节点作为内联的预算。每个节点都会消耗一个预算。当一个函数的开销超过了这个预算,就无法内联。( 参考自:https://juejin.cn/post/6924888439577903117 )
下面我们通过一段简短的代码来理解 go 编译过程的内联优化过程。我们从 gomonkey 关于内联的 issue 摘取了一段代码:
package main
import "fmt"
func G2() string { return "G2" }
func G() string { return G2() }
func main() {
g := G()
fmt.Println(g)
}
上面这段代码很简单,main 函数中调用了 G 函数拿到返回值赋值变量给 g 后打印结果。其中 G 函数调用了 G2 函数,G2 函数返回了字符串 "G2"。
然而,经过编译器内联优化后的代码,G 函数实际被展开了,最终 main 函数被内联优化成:
func main() {
// 展开 g := G()
// => g := "G2"
// 展开 fmt.Println(g)
// => 相关
}
可见,G 函数和 G2 函数原本执行时候带来函数栈申请回收,优化过后将不再有。
这里我们执行 go run -gcflags="-m -m" main.go 来查看编译在进行以上代码的内联优化。
?? test go run -gcflags="-m -m" main.go
# command-line-arguments
./main.go:5:6: can inline G2 as: func() string { return "G2" } ./main.go:9:6: can inline G as: func() string { return G2() } ./main.go:10:11: inlining call to G2 func() string { return "G2" } ./main.go:13:6: cannot inline main: function too complex: cost 87 exceeds budget 80
./main.go:14:8: inlining call to G func() string { return G2() } ./main.go:14:8: inlining call to G2 func() string { return "G2" } ./main.go:15:13: inlining call to fmt.Println func(...interface {}) (int, error) { var fmt..autotmp_3 int; fmt..autotmp_3 = <N>; var fmt..autotmp_4 error; fmt..autotmp_4 = <N>; fmt..autotmp_3, fmt..autotmp_4 = fmt.Fprintln(io.Writer(os.Stdout), fmt.a...); return fmt..autotmp_3, fmt..autotmp_4 }
./main.go:15:13: g escapes to heap ./main.go:15:13: main []interface {} literal does not escape
./main.go:15:13: io.Writer(os.Stdout) escapes to heap <autogenerated>:1: (*File).close .this does not escape G2
从打印出的内容可以看,G2\G\fmt.Println 都被内联了。
上面提到了 gomokey 打桩的逻辑,它是在函数调用的时候通过机器指令将函数的指向替换了。由于函数编译后被内联,实际上不存在函数的调用,导致单测执行不通过,这也是内联导致 gomonkey 打桩无效的问题所在。
写在最后
Freemen App是一款专注于IT程序员求职招聘的一个求职平台,旨在帮助IT技术工作者能更好更快入职及努力协调IT技术者工作和生活的关系,让工作更自由!
本文转载自腾讯技术工程
相关推荐
- 使用Python编写Ping监测程序(python 测验)
-
Ping是一种常用的网络诊断工具,它可以测试两台计算机之间的连通性;如果您需要监测某个IP地址的连通情况,可以使用Python编写一个Ping监测程序;本文将介绍如何使用Python编写Ping监测程...
- 批量ping!有了这个小工具,python再也香不了一点
-
号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部下午好,我的网工朋友。在咱们网工的日常工作中,经常需要检测多个IP地址的连通性。不知道你是否也有这样的经历:对着电脑屏...
- python之ping主机(python获取ping结果)
-
#coding=utf-8frompythonpingimportpingforiinrange(100,255):ip='192.168.1.'+...
- 网站安全提速秘籍!Nginx配置HTTPS+反向代理实战指南
-
太好了,你直接问到重点场景了:Nginx+HTTPS+反向代理,这个组合是现代Web架构中最常见的一种部署方式。咱们就从理论原理→实操配置→常见问题排查→高级玩法一层层剖开说,...
- Vue开发中使用iframe(vue 使用iframe)
-
内容:iframe全屏显示...
- Vue3项目实践-第五篇(改造登录页-Axios模拟请求数据)
-
本文将介绍以下内容:项目中的public目录和访问静态资源文件的方法使用json文件代替http模拟请求使用Axios直接访问json文件改造登录页,配合Axios进行登录请求,并...
- Vue基础四——Vue-router配置子路由
-
我们上节课初步了解Vue-router的初步知识,也学会了基本的跳转,那我们这节课学习一下子菜单的路由方式,也叫子路由。子路由的情况一般用在一个页面有他的基础模版,然后它下面的页面都隶属于这个模版,只...
- Vue3.0权限管理实现流程【实践】(vue权限管理系统教程)
-
作者:lxcan转发链接:https://segmentfault.com/a/1190000022431839一、整体思路...
- swiper在vue中正确的使用方法(vue中如何使用swiper)
-
swiper是网页中非常强大的一款轮播插件,说是轮播插件都不恰当,因为它能做的事情太多了,swiper在vue下也是能用的,需要依赖专门的vue-swiper插件,因为vue是没有操作dom的逻辑的,...
- Vue怎么实现权限管理?控制到按钮级别的权限怎么做?
-
在Vue项目中实现权限管理,尤其是控制到按钮级别的权限控制,通常包括以下几个方面:一、权限管理的层级划分...
- 【Vue3】保姆级毫无废话的进阶到实战教程 - 01
-
作为一个React、Vue双修选手,在Vue3逐渐稳定下来之后,是时候摸摸Vue3了。Vue3的变化不可谓不大,所以,本系列主要通过对Vue3中的一些BigChanges做...
- Vue3开发极简入门(13):编程式导航路由
-
前面几节文章,写的都是配置路由。但是在实际项目中,下面这种路由导航的写法才是最常用的:比如登录页面,服务端校验成功后,跳转至系统功能页面;通过浏览器输入URL直接进入系统功能页面后,读取本地存储的To...
- vue路由同页面重定向(vue路由重定向到外部url)
-
在Vue中,可以使用路由的重定向功能来实现同页面的重定向。首先,在路由配置文件(通常是`router/index.js`)中,定义一个新的路由,用于重定向到同一个页面。例如,我们可以定义一个名为`Re...
- 那个 Vue 的路由,路由是干什么用的?
-
在Vue里,路由就像“页面导航的指挥官”,专门负责管理页面(组件)的切换和显示逻辑。简单来说,它能让单页应用(SPA)像多页应用一样实现“不同URL对应不同页面”的效果,但整个过程不会刷新网页。一、路...
- Vue3项目投屏功能开发!(vue投票功能)
-
最近接了个大屏项目,产品想在不同的显示器上展示大屏项目不同的页面,做出来的效果图大概长这样...
你 发表评论:
欢迎
- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)