百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

小样本异常检测新突破!全新FSAD方法全类别通用,idea代码已开源

ztj100 2025-01-08 18:44 35 浏览 0 评论

小样本异常检测FSAD,一种适用于标注数据稀缺情况下的异常检测技术。在仅有少量标注数据的情况下,它比传统方法更能提高准确性和效率,是工业监控、医疗诊断等领域的关键技术。

目前FSAD还存在很多问题等我们解决,不过换个思路想,这些都是可挖掘的创新方向,而且已经有效果绝赞的成果可参考,比如GraphCore,突破工业视觉极限,减少冗余视觉特征的数量;再比如CAReg,首个全类别通用的开源FSAD方法,完美解决计算成本高且效率低的问题。

为了帮各位论文er省下查找资料的时间,我从中挑选了11个FSAD相关最新成果来和大家分享,idea都非常值得学习,当然开源代码也都整理了,大家有任何复现问题都可以来讨论~

论文原文+开源代码需要的同学关注“学姐带你玩AI”公众号,那边回复“FSAD”获取。

Pushing the limits of few-shot anomaly detection in industry vision: GraphCore

方法:作者针对工业产品的少样本视觉异常检测提出一种新方法GraphCore,通过提取视觉同构不变特征(VIIF)来进行异常测量,实验结果表明该方法在MVTec AD和MPDD数据集上的性能显著优于现有方法,并且只需极少量的正常样本进行训练。

创新点:

  • 提出了一种特征增强的方法,用于研究由CNN生成的视觉特征的属性。
  • 提出了一种名为GraphCore的新的FSAD方法,通过使用少量正常样本进行快速训练,实现了新产品的竞争性AD准确性表现,并且能够防止旧产品的异常迁移和适应。
  • 提出了一种新的模型VIIG,可以从少量正常样本中提取视觉等距不变特征(VIIF),并将其添加到特征存储器中,从而提高了异常检测的准确性。

Few-Shot Anomaly Detection via Category-Agnostic Registration Learning

方法:论文提出了一种新颖的少样本异常检测方法,称为CAReg,通过学习通用的跨类别注册技术,仅使用每个类别的正常图像进行训练,从而实现了对新类别的无需微调的模型应用,提高了异常检测的准确性和效率。

创新点:

  • 引入了一种类别无关的异常检测模型:通过将异常检测建模为一个比较任务,模型可以在不需要了解图像类别的情况下进行异常检测。通过特征级别的配准,模型可以将不同类别的图像进行比较,从而实现跨类别的异常检测。
  • 提出了一种基于Siamese网络和空间变换网络的特征配准模块:通过特征级别的配准,模型可以将不同类别的图像进行对齐,从而提高模型的泛化能力和鲁棒性。

Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts

方法:论文提出了一种名为 InCTRL 的新型小样本异常检测方法,旨在训练一个能够泛化到不同应用领域数据集的通用异常检测模型,而无需在目标数据上进行进一步训练。InCTRL通过对查询图像和少量正常样本提示之间的残差进行整体评估,实现了优秀的GAD泛化能力。

创新点:

  • 引入了GAD任务,用于评估AD方法在不需要在目标数据集上进行训练/调优的情况下,在各种场景下识别异常的泛化能力。
  • 提出了一种名为InCTRL的方法来解决这个问题。InCTRL通过在上下文中进行残差学习来实现优越的GAD泛化。通过图像级别和补丁级别的残差学习,InCTRL能够更好地捕捉查询图像和少样本正常样本之间的局部和全局差异。
  • InCTRL允许将文本提示引导的正常/异常先验知识无缝整合到检测模型中,为文本-图像对齐的语义空间提供了额外的优势。

Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection

方法:论文提出了一种新的分割模型,利用少量标记图像和正常图像之间共享的逻辑约束。作还提出了一种新颖的AD方法,其中包括基于分割的构建3个不同存储器的方法。为了生成统一的异常分数,作者引入了自适应缩放策略,这样该模型能够检测LA和SA,并且在用户所需的最小工作量下取得了显著的改进。

创新点:

  • 利用部分分割进行异常检测(PSAD):提出了一种新的异常检测方法,使用三个不同的内存库,利用视觉特征和语义分割来检测元素的局部和全局依赖关系。
  • 自适应缩放方法:提出了一种自适应缩放方法,用于聚合具有不同尺度的异常分数,以确保可以可靠地比较分数。

论文原文+开源代码需要的同学关注“学姐带你玩AI”公众号,那边回复“FSAD”获取。

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: