Python 数据分析:数据分析中的常见统计方法解析
ztj100 2025-01-05 01:00 16 浏览 0 评论
数据分析是现代社会中不可或缺的一部分,通过对数据的统计和分析,我们可以得出有用的信息和见解,支持决策和解决问题。本文将介绍在 Python 中常见的数据统计方法,包括描述性统计、假设检验、回归分析等,并提供详细的示例代码。
描述性统计
描述性统计是数据分析的第一步,它帮助了解数据的基本特征。以下是一些常见的描述性统计方法:
1. 平均值(均值)
平均值是数据集中所有数据的总和除以数据点的数量,用于衡量数据的集中趋势。
import numpy as np
data = [10, 20, 30, 40, 50]
mean = np.mean(data)
print("平均值:", mean)
2. 中位数
中位数是数据集中的中间值,将数据排序后位于中间位置的值。
import numpy as np
data = [10, 20, 30, 40, 50]
median = np.median(data)
print("中位数:", median)
3. 众数
众数是数据集中出现次数最多的值。
from statistics import mode
data = [10, 20, 30, 20, 50, 20]
mode_value = mode(data)
print("众数:", mode_value)
4. 标准差和方差
标准差和方差度量了数据的离散程度,标准差是方差的平方根。
import numpy as np
data = [10, 20, 30, 40, 50]
std_deviation = np.std(data)
variance = np.var(data)
print("标准差:", std_deviation)
print("方差:", variance)
5. 百分位数
百分位数表示数据中小于或等于给定百分比的观察值。常见的百分位数包括第25、第50和第75百分位数,分别对应于数据的下四分位数、中位数和上四分位数。
import numpy as np
data = [10, 20, 30, 40, 50]
q1 = np.percentile(data, 25)
median = np.percentile(data, 50)
q3 = np.percentile(data, 75)
print("下四分位数(Q1):", q1)
print("中位数:", median)
print("上四分位数(Q3):", q3)
假设检验
假设检验是用于验证关于总体统计特征的假设的方法。以下是一些常见的假设检验方法:
1. t-检验
t-检验用于比较两组数据之间的均值是否具有统计显著性差异。
import scipy.stats as stats
group1 = [25, 30, 35, 40, 45]
group2 = [20, 28, 32, 38, 42]
t_statistic, p_value = stats.ttest_ind(group1, group2)
print("t-统计量:", t_statistic)
print("p-值:", p_value)
2. 卡方检验
卡方检验用于确定两个分类变量之间是否存在相关性。
import scipy.stats as stats
observed = [[10, 20], [30, 40]]
chi2, p, dof, expected = stats.chi2_contingency(observed)
print("卡方统计量:", chi2)
print("p-值:", p)
3. 方差分析
方差分析用于比较多个组之间的均值是否存在统计显著性差异。
import scipy.stats as stats
group1 = [25, 30, 35, 40, 45]
group2 = [20, 28, 32, 38, 42]
group3 = [15, 18, 25, 30, 35]
f_statistic, p_value = stats.f_oneway(group1, group2, group3)
print("F-统计量:", f_statistic)
print("p-值:", p_value)
回归分析
回归分析用于探究变量之间的关系,其中最常见的是线性回归。
线性回归
线性回归用于拟合数据并确定自变量与因变量之间的线性关系。
import numpy as np
from scipy.stats import linregress
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 4, 5, 4, 5])
slope, intercept, r_value, p_value, std_err = linregress(x, y)
plt.scatter(x, y)
plt.plot(x, slope * x + intercept, color='red')
plt.xlabel('自变量')
plt.ylabel('因变量')
plt.show()
print("斜率:", slope)
print("截距:", intercept)
print("相关系数:", r_value)
print("p-值:", p_value)
数据可视化
数据可视化是数据分析的重要部分,它可以帮助更好地理解数据和趋势。
1. 直方图
直方图用于展示数据的分布情况。
import numpy as np
import matplotlib.pyplot as plt
data = np.random.randn(1000) # 生成随机数据
plt.hist(data, bins=20, density=True, alpha=0.6, color='g')
plt.xlabel('值')
plt.ylabel('频率')
plt.title('直方图')
plt.show()
2. 散点图
散点图用于展示两个变量之间的关系。
import numpy as np
import matplotlib.pyplot as plt
x = np.random.randn(100)
y = 2 * x + np.random.randn(100) # 创建线性关系
plt.scatter(x, y, marker='o', color='b', alpha=0.6)
plt.xlabel('自变量')
plt.ylabel('因变量')
plt.title('散点图')
plt.show()
以上只是数据分析中常见的一些统计方法和数据可视化技巧的示例,实际应用中可能需要根据具体问题选择合适的方法。希望本文提供的示例代码可以帮助你更好地理解和应用这些方法,从而进行有效的数据分析工作。数据分析是一个广泛的领域,不断学习和实践将有助于提高你的数据分析技能。
- 上一篇:一文搞懂 NumPy 统计函数
- 下一篇:服务端测试实战
相关推荐
- 再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)
-
在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...
- python创建分类器小结(pytorch分类数据集创建)
-
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...
- matplotlib——绘制散点图(matplotlib散点图颜色和图例)
-
绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...
- python实现实时绘制数据(python如何绘制)
-
方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...
- 简单学Python——matplotlib库3——绘制散点图
-
前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...
- 数据分析-相关性分析可视化(相关性分析数据处理)
-
前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...
- 免费Python机器学习课程一:线性回归算法
-
学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...
- 用Python进行机器学习(2)之逻辑回归
-
前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...
- 【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂
-
一、拟合和回归的区别拟合...
- 推荐2个十分好用的pandas数据探索分析神器
-
作者:俊欣来源:关于数据分析与可视化...
- 向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- 用Python进行机器学习(11)-主成分分析PCA
-
我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...
- 神经网络基础深度解析:从感知机到反向传播
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- Python实现基于机器学习的RFM模型
-
CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)