百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

腾讯架构师经验分享,MySQL 怎样批量插入数据,并且不重复

ztj100 2024-12-28 16:53 34 浏览 0 评论

温故而知新,知识这个东西,看来真的要温故而知新,一直不用,都要忘记了。

业务很简单:需要批量插入一些数据,数据来源可能是其他数据库的表,也可能是一个外部excel的导入。

那么问题来了,是不是每次插入之前都要查一遍,看看重不重复,在代码里筛选一下数据,重复的就过滤掉呢?

向大数据数据库中插入值时,还要判断插入是否重复,然后插入。如何提高效率?

看来这个问题不止我一个人苦恼过。

解决的办法有很多种,不同的场景解决方案也不一样,数据量很小的情况下,怎么搞都行,但是数据量很大的时候,这就不是一个简单的问题了。

几百万的数据,不可能查出来去重处理!

说一下我Google到的解决方案。

1、insert ignore into

当插入数据时,如出现错误时,如重复数据,将不返回错误,只以警告形式返回。所以使用ignore请确保语句本身没有问题,否则也会被忽略掉。例如:

INSERT IGNORE INTO user (name) VALUES ('telami') 

这种方法很简便,但是有一种可能,就是插入不是因为重复数据报错,而是因为其他原因报错的,也同样被忽略了~

2、on duplicate key update

当primary或者unique重复时,则执行update语句,如update后为无用语句,如id=id,则同1功能相同,但错误不会被忽略掉。

例如,为了实现name重复的数据插入不报错,可使用一下语句:

INSERT INTO user (name) VALUES ('telami') ON duplicate KEY UPDATE id = id 

这种方法有个前提条件,就是,需要插入的约束,需要是主键或者唯一约束(在你的业务中那个要作为唯一的判断就将那个字段设置为唯一约束也就是unique key)。

3、insert … select … where not exist

根据select的条件判断是否插入,可以不光通过primary 和unique来判断,也可通过其它条件。例如:

INSERT INTO user (name) SELECT 'telami' FROM dual WHERE NOT EXISTS (SELECT id FROM user WHERE id = 1) 

这种方法其实就是使用了mysql的一个临时表的方式,但是里面使用到了子查询,效率也会有一点点影响,如果能使用上面的就不使用这个。

4、replace into

如果存在primary or unique相同的记录,则先删除掉。再插入新记录。

REPLACE INTO user SELECT 1, 'telami' FROM books 

这种方法就是不管原来有没有相同的记录,都会先删除掉然后再插入。

实践

选择的是第二种方式

<insert id="batchSaveUser" parameterType="list">
    insert into user (id,username,mobile_number)
    values
    <foreach collection="list" item="item" index="index" separator=",">
        (
            #{item.id},
            #{item.username},
            #{item.mobileNumber}
        )
    </foreach>
    ON duplicate KEY UPDATE id = id
</insert>

这里用的是Mybatis,批量插入的一个操作,mobile_number已经加了唯一约束。这样在批量插入时,如果存在手机号相同的话,是不会再插入了的。

相关推荐

其实TensorFlow真的很水无非就这30篇熬夜练

好的!以下是TensorFlow需要掌握的核心内容,用列表形式呈现,简洁清晰(含表情符号,<300字):1.基础概念与环境TensorFlow架构(计算图、会话->EagerE...

交叉验证和超参数调整:如何优化你的机器学习模型

准确预测Fitbit的睡眠得分在本文的前两部分中,我获取了Fitbit的睡眠数据并对其进行预处理,将这些数据分为训练集、验证集和测试集,除此之外,我还训练了三种不同的机器学习模型并比较了它们的性能。在...

机器学习交叉验证全指南:原理、类型与实战技巧

机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合...

深度学习中的类别激活热图可视化

作者:ValentinaAlto编译:ronghuaiyang导读使用Keras实现图像分类中的激活热图的可视化,帮助更有针对性...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

机器学习入门教程-第六课:监督学习与非监督学习

1.回顾与引入上节课我们谈到了机器学习的一些实战技巧,比如如何处理数据、选择模型以及调整参数。今天,我们将更深入地探讨机器学习的两大类:监督学习和非监督学习。2.监督学习监督学习就像是有老师的教学...

Python教程(三十八):机器学习基础

...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

超全面讲透一个算法模型,高斯核!!

...

神经网络与传统统计方法的简单对比

传统的统计方法如...

AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程

...

自回归滞后模型进行多变量时间序列预测

下图显示了关于不同类型葡萄酒销量的月度多元时间序列。每种葡萄酒类型都是时间序列中的一个变量。假设要预测其中一个变量。比如,sparklingwine。如何建立一个模型来进行预测呢?一种常见的方...

苹果AI策略:慢哲学——科技行业的“长期主义”试金石

苹果AI策略的深度原创分析,结合技术伦理、商业逻辑与行业博弈,揭示其“慢哲学”背后的战略智慧:一、反常之举:AI狂潮中的“逆行者”当科技巨头深陷AI军备竞赛,苹果的克制显得格格不入:功能延期:App...

时间序列预测全攻略,6大模型代码实操

如果你对数据分析感兴趣,希望学习更多的方法论,希望听听经验分享,欢迎移步宝藏公众号...

AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

...

取消回复欢迎 发表评论: