使用贝叶斯优化进行深度神经网络超参数优化
ztj100 2024-12-19 17:56 19 浏览 0 评论
在本文中,我们将深入研究超参数优化。
为了方便起见本文将使用 Tensorflow 中包含的 Fashion MNIST[1] 数据集。该数据集在训练集中包含 60,000 张灰度图像,在测试集中包含 10,000 张图像。 每张图片代表属于 10 个类别之一的单品(“T 恤/上衣”、“裤子”、“套头衫”等)。 因此这是一个多类分类问题。
这里简单介绍准备数据集的步骤,因为本文的主要内容是超参数的优化,所以这部分只是简单介绍流程,一般情况下,流程如下:
- 加载数据。
- 分为训练集、验证集和测试集。
- 将像素值从 0–255 标准化到 0–1 范围。
- One-hot 编码目标变量。
#load data
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
# split into train, validation and test sets
train_x, val_x, train_y, val_y = train_test_split(train_images, train_labels, stratify=train_labels, random_state=48, test_size=0.05)
(test_x, test_y)=(test_images, test_labels)
# normalize pixels to range 0-1
train_x = train_x / 255.0
val_x = val_x / 255.0
test_x = test_x / 255.0
#one-hot encode target variable
train_y = to_categorical(train_y)
val_y = to_categorical(val_y)
test_y = to_categorical(test_y)
我们所有训练、验证和测试集的形状是:
print(train_x.shape) #(57000, 28, 28)
print(train_y.shape) #(57000, 10)
print(val_x.shape) #(3000, 28, 28)
print(val_y.shape) #(3000, 10)
print(test_x.shape) #(10000, 28, 28)
print(test_y.shape) #(10000, 10)
现在,我们将使用 Keras Tuner 库 [2]:它将帮助我们轻松调整神经网络的超参数:
pip install keras-tuner
Keras Tuner 需要 Python 3.6+ 和 TensorFlow 2.0+
超参数调整是机器学习项目的基础部分。 有两种类型的超参数:
- 结构超参数:定义模型的整体架构(例如隐藏单元的数量、层数)
- 优化器超参数:影响训练速度和质量的参数(例如学习率和优化器类型、批量大小、轮次数等)
为什么需要超参数调优库? 我们不能尝试所有可能的组合,看看验证集上什么是最好的吗?
这肯定是不行的因为深度神经网络需要大量时间来训练,甚至几天。 如果在云服务器上训练大型模型,那么每个实验实验都需要花很多的钱。
因此,需要一种限制超参数搜索空间的剪枝策略。
keras-tuner提供了贝叶斯优化器。 它搜索每个可能的组合,而是随机选择前几个。 然后根据这些超参数的性能,选择下一个可能的最佳值。因此每个超参数的选择都取决于之前的尝试。 根据历史记录选择下一组超参数并评估性能,直到找到最佳组合或到达最大试验次数。 我们可以使用参数“max_trials”来配置它。
除了贝叶斯优化器之外,keras-tuner还提供了另外两个常见的方法:RandomSearch 和 Hyperband。 我们将在本文末尾讨论它们。
接下来就是对我们的网络应用超参数调整。我们尝试两种网络架构,标准多层感知器(MLP)和卷积神经网络(CNN)。
首先让我们看看基线 MLP 模型是什么:
model_mlp = Sequential()
model_mlp.add(Flatten(input_shape=(28, 28)))
model_mlp.add(Dense(350, activation='relu'))
model_mlp.add(Dense(10, activation='softmax'))
print(model_mlp.summary())
model_mlp.compile(optimizer="adam",loss='categorical_crossentropy')
调优过程需要两种主要方法:
hp.Int():设置超参数的范围,其值为整数 - 例如,密集层中隐藏单元的数量:
model.add(Dense(units = hp.Int('dense-bot', min_value=50, max_value=350, step=50))
hp.Choice():为超参数提供一组值——例如,Adam 或 SGD 作为最佳优化器?
hp_optimizer=hp.Choice('Optimizer', values=['Adam', 'SGD'])
在我们的 MLP 示例中,我们测试了以下超参数:
- 隐藏层数:1-3
- 第一密集层大小:50–350
- 第二和第三密集层大小:50–350
- Dropout:0、0.1、0.2
- 优化器:SGD(nesterov=True,momentum=0.9) 或 Adam
- 学习率:0.1、0.01、0.001
代码如下:
model = Sequential()
model.add(Dense(units = hp.Int('dense-bot', min_value=50, max_value=350, step=50), input_shape=(784,), activation='relu'))
for i in range(hp.Int('num_dense_layers', 1, 2)):
model.add(Dense(units=hp.Int('dense_' + str(i), min_value=50, max_value=100, step=25), activation='relu'))
model.add(Dropout(hp.Choice('dropout_'+ str(i), values=[0.0, 0.1, 0.2])))
model.add(Dense(10,activation="softmax"))
hp_optimizer=hp.Choice('Optimizer', values=['Adam', 'SGD'])
if hp_optimizer == 'Adam':
hp_learning_rate = hp.Choice('learning_rate', values=[1e-1, 1e-2, 1e-3])
elif hp_optimizer == 'SGD':
hp_learning_rate = hp.Choice('learning_rate', values=[1e-1, 1e-2, 1e-3])
nesterov=True
momentum=0.9
这里需要注意第 5 行的 for 循环:让模型决定网络的深度!
最后,就是运行了。 请注意我们之前提到的 max_trials 参数。
model.compile(optimizer = hp_optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
tuner_mlp = kt.tuners.BayesianOptimization(
model,
seed=random_seed,
objective='val_loss',
max_trials=30,
directory='.',
project_name='tuning-mlp')
tuner_mlp.search(train_x, train_y, epochs=50, batch_size=32, validation_data=(dev_x, dev_y), callbacks=callback)
我们得到结果
这个过程用尽了迭代次数,大约需要 1 小时才能完成。 我们还可以使用以下命令打印模型的最佳超参数:
best_mlp_hyperparameters = tuner_mlp.get_best_hyperparameters(1)[0]
print("Best Hyper-parameters")
best_mlp_hyperparameters.values
现在我们可以使用最优超参数重新训练我们的模型:
model_mlp = Sequential()
model_mlp.add(Dense(best_mlp_hyperparameters['dense-bot'], input_shape=(784,), activation='relu'))
for i in range(best_mlp_hyperparameters['num_dense_layers']):
model_mlp.add(Dense(units=best_mlp_hyperparameters['dense_' +str(i)], activation='relu'))
model_mlp.add(Dropout(rate=best_mlp_hyperparameters['dropout_' +str(i)]))
model_mlp.add(Dense(10,activation="softmax"))
model_mlp.compile(optimizer=best_mlp_hyperparameters['Optimizer'], loss='categorical_crossentropy',metrics=['accuracy'])
history_mlp= model_mlp.fit(train_x, train_y, epochs=100, batch_size=32, validation_data=(dev_x, dev_y), callbacks=callback)
或者,我们可以用这些参数重新训练我们的模型:
model_mlp=tuner_mlp.hypermodel.build(best_mlp_hyperparameters)
history_mlp=model_mlp.fit(train_x, train_y, epochs=100, batch_size=32,
validation_data=(dev_x, dev_y), callbacks=callback)
然后测试准确率
mlp_test_loss, mlp_test_acc = model_mlp.evaluate(test_x, test_y, verbose=2)
print('\nTest accuracy:', mlp_test_acc)
# Test accuracy: 0.8823
与基线的模型测试精度相比:
基线 MLP 模型:86.6 %最佳 MLP 模型:88.2 %。测试准确度的差异约为 3%!
下面我们使用相同的流程,将MLP改为CNN,这样可以测试更多参数。
首先,这是我们的基线模型:
model_cnn = Sequential()
model_cnn.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model_cnn.add(MaxPooling2D((2, 2)))
model_cnn.add(Flatten())
model_cnn.add(Dense(100, activation='relu'))
model_cnn.add(Dense(10, activation='softmax'))
model_cnn.compile(optimizer="adam", loss='categorical_crossentropy', metrics=['accuracy'])
基线模型 包含卷积和池化层。 对于调优,我们将测试以下内容:
- 卷积、MaxPooling 和 Dropout 层的“块”数
- 每个块中 Conv 层的过滤器大小:32、64
- 转换层上的有效或相同填充
- 最后一个额外层的隐藏层大小:25-150,乘以 25
- 优化器:SGD(nesterov=True,动量=0.9)或 Adam
- 学习率:0.01、0.001
model = Sequential()
model = Sequential()
model.add(Input(shape=(28, 28, 1)))
for i in range(hp.Int('num_blocks', 1, 2)):
hp_padding=hp.Choice('padding_'+ str(i), values=['valid', 'same'])
hp_filters=hp.Choice('filters_'+ str(i), values=[32, 64])
model.add(Conv2D(hp_filters, (3, 3), padding=hp_padding, activation='relu', kernel_initializer='he_uniform', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(hp.Choice('dropout_'+ str(i), values=[0.0, 0.1, 0.2])))
model.add(Flatten())
hp_units = hp.Int('units', min_value=25, max_value=150, step=25)
model.add(Dense(hp_units, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(10,activation="softmax"))
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3])
hp_optimizer=hp.Choice('Optimizer', values=['Adam', 'SGD'])
if hp_optimizer == 'Adam':
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3])
elif hp_optimizer == 'SGD':
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3])
nesterov=True
momentum=0.9
像以前一样,我们让网络决定它的深度。 最大迭代次数设置为 100:
model.compile( optimizer=hp_optimizer,loss='categorical_crossentropy', metrics=['accuracy'])
tuner_cnn = kt.tuners.BayesianOptimization(
model,
objective='val_loss',
max_trials=100,
directory='.',
project_name='tuning-cnn')
结果如下:
得到的超参数
最后使用最佳超参数训练我们的 CNN 模型:
model_cnn = Sequential()
model_cnn.add(Input(shape=(28, 28, 1)))
for i in range(best_cnn_hyperparameters['num_blocks']):
hp_padding=best_cnn_hyperparameters['padding_'+ str(i)]
hp_filters=best_cnn_hyperparameters['filters_'+ str(i)]
model_cnn.add(Conv2D(hp_filters, (3, 3), padding=hp_padding, activation='relu', kernel_initializer='he_uniform', input_shape=(28, 28, 1)))
model_cnn.add(MaxPooling2D((2, 2)))
model_cnn.add(Dropout(best_cnn_hyperparameters['dropout_'+ str(i)]))
model_cnn.add(Flatten())
model_cnn.add(Dense(best_cnn_hyperparameters['units'], activation='relu', kernel_initializer='he_uniform'))
model_cnn.add(Dense(10,activation="softmax"))
model_cnn.compile(optimizer=best_cnn_hyperparameters['Optimizer'],
loss='categorical_crossentropy',
metrics=['accuracy'])
print(model_cnn.summary())
history_cnn= model_cnn.fit(train_x, train_y, epochs=50, batch_size=32, validation_data=(dev_x, dev_y), callbacks=callback)
检查测试集的准确率:
cnn_test_loss, cnn_test_acc = model_cnn.evaluate(test_x, test_y, verbose=2)
print('\nTest accuracy:', cnn_test_acc)
# Test accuracy: 0.92
与基线的 CNN 模型测试精度相比:
- 基线 CNN 模型:90.8 %
- 最佳 CNN 模型:92%
我们看到优化模型的性能提升!
除了准确性之外,我们还可以看到优化的效果很好,因为:
在每种情况下都选择了一个非零的 Dropout 值,即使我们也提供了零 Dropout。 这是意料之中的,因为 Dropout 是一种减少过拟合的机制。有趣的是,最好的 CNN 架构是标准CNN,其中过滤器的数量在每一层中逐渐增加。 这是意料之中的,因为随着后续层的增加,模式变得更加复杂(这也是我们在学习各种模型和论文时被证明的结果)需要更多的过滤器才能捕获这些模式组合。
以上例子也说明Keras Tuner 是使用 Tensorflow 优化深度神经网络的很好用的工具。
我们上面也说了本文选择是贝叶斯优化器。 但是还有两个其他的选项:
RandomSearch:随机选择其中的一些来避免探索超参数的整个搜索空间。 但是,它不能保证会找到最佳超参数
Hyperband:选择一些超参数的随机组合,并仅使用它们来训练模型几个 epoch。 然后使用这些超参数来训练模型,直到用尽所有 epoch 并从中选择最好的。
作者:Nikos Kafritsas
相关推荐
- Java项目宝塔搭建实战MES-Springboot开源MES智能制造系统源码
-
大家好啊,我是测评君,欢迎来到web测评。...
- 一个令人头秃的问题,Logback 日志级别设置竟然无效?
-
原文链接:https://mp.weixin.qq.com/s/EFvbFwetmXXA9ZGBGswUsQ原作者:小黑十一点半...
- 实战!SpringBoot + RabbitMQ死信队列实现超时关单
-
需求背景之为什么要有超时关单原因一:...
- 火了!阿里P8架构师编写堪称神级SpringBoot手册,GitHub星标99+
-
Springboot现在已成为企业面试中必备的知识点,以及企业应用的重要模块。今天小编给大家分享一份来着阿里P8架构师编写的...
- Java本地搭建宝塔部署实战springboot仓库管理系统源码
-
大家好啊,我是测评君,欢迎来到web测评。...
- 工具尝鲜(1)-Fleet构建运行一个Springboot入门Web项目
-
Fleet是JetBrains公司推出的轻量级编辑器,对标VSCode。该款产品还在公测当中,具体下载链接如下JetBrainsFleet:由JetBrains打造的下一代IDE。想要尝试的...
- SPRINGBOOT WEB 实现文件夹上传(保留目录结构)
-
网上搜到的SpringBoot的代码不多,完整的不多,能用的也不多,基本上大部分的文章只是提供了少量的代码,讲一下思路,或者实现方案。之前一般的做法都是使用HTML5来做的,大部都是传文件的,传文件夹...
- Java项目本地部署宝塔搭建实战报修小程序springboot版系统源码
-
大家好啊,我是测评君,欢迎来到web测评。...
- 新年IT界大笑料“工行取得基于SpringBoot的web系统后端实现专利
-
先看看专利描述...
- 看完SpringBoot源码后,整个人都精神了
-
前言当读完SpringBoot源码后,被Spring的设计者们折服,Spring系列中没有几行代码是我们看不懂的,而是难在理解设计思路,阅读Spring、SpringMVC、SpringBoot需要花...
- 阿里大牛再爆神著:SpringBoot+Cloud微服务手册
-
今天给大家分享的这份“Springboot+Springcloud微服务开发实战手册”共有以下三大特点...
- WebClient是什么?SpringBoot中如何使用WebClient?
-
WebClient是什么?WebClient是SpringFramework5引入的一个非阻塞、响应式的Web客户端库。它提供了一种简单而强大的方式来进行HTTP请求,并处理来自服务器的响应。与传...
- SpringBoot系列——基于mui的H5套壳APP开发web框架
-
前言 大致原理:创建一个main主页面,只有主页面有头部、尾部,中间内容嵌入iframe内容子页面,如果在当前页面进行跳转操作,也是在iframe中进行跳转,而如果点击尾部按钮切换模块、页面,那...
- 在Spring Boot中使用 jose4j 实现 JSON Web Token (JWT)
-
JSONWebToken或JWT作为服务之间安全通信的一种方式而闻名。...
- Spring Boot使用AOP方式实现统一的Web请求日志记录?
-
AOP简介AOP(AspectOrientedProgramming),面相切面编程,是通过代码预编译与运行时动态代理的方式来实现程序的统一功能维护的方案。AOP作为Spring框架的核心内容,通...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- Java项目宝塔搭建实战MES-Springboot开源MES智能制造系统源码
- 一个令人头秃的问题,Logback 日志级别设置竟然无效?
- 实战!SpringBoot + RabbitMQ死信队列实现超时关单
- 火了!阿里P8架构师编写堪称神级SpringBoot手册,GitHub星标99+
- Java本地搭建宝塔部署实战springboot仓库管理系统源码
- 工具尝鲜(1)-Fleet构建运行一个Springboot入门Web项目
- SPRINGBOOT WEB 实现文件夹上传(保留目录结构)
- Java项目本地部署宝塔搭建实战报修小程序springboot版系统源码
- 新年IT界大笑料“工行取得基于SpringBoot的web系统后端实现专利
- 看完SpringBoot源码后,整个人都精神了
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)