百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

一文读懂YOLO11(原理介绍+代码详见+结构框图)

ztj100 2024-12-18 18:20 39 浏览 0 评论

本文主要内容:YOLO11 全新发布(原理介绍+代码详见+结构框图)| YOLO11如何训练自己的数据集(NEU-DET为案列)


1.YOLO11介绍

Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。

目标检测性能

语义分割性能

Pose关键点检测性能

结构图如下:


1.1C3k2

C3k2,结构图如下


C3k2,继承自类C2f,其中通过c3k设置False或者Ture来决定选择使用C3k还是Bottleneck

实现代码ultralytics/nn/modules/block.py

class C3k2(C2f):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
        """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
        )


class C3k(C3):
    """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
        """Initializes the C3k module with specified channels, number of layers, and configurations."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))

1.2 C2PSA介绍

借鉴V10 PSA结构,实现了C2PSA和C2fPSA,最终选择了基于C2的C2PSA(可能涨点更好?)

实现代码ultralytics/nn/modules/block.py




class PSABlock(nn.Module):
    """
    PSABlock class implementing a Position-Sensitive Attention block for neural networks.

    This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
    with optional shortcut connections.

    Attributes:
        attn (Attention): Multi-head attention module.
        ffn (nn.Sequential): Feed-forward neural network module.
        add (bool): Flag indicating whether to add shortcut connections.

    Methods:
        forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers.

    Examples:
        Create a PSABlock and perform a forward pass
        >>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
        >>> input_tensor = torch.randn(1, 128, 32, 32)
        >>> output_tensor = psablock(input_tensor)
    """

    def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None:
        """Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction."""
        super().__init__()

        self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
        self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
        self.add = shortcut

    def forward(self, x):
        """Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor."""
        x = x + self.attn(x) if self.add else self.attn(x)
        x = x + self.ffn(x) if self.add else self.ffn(x)
        return x





class C2PSA(nn.Module):
    """
    C2PSA module with attention mechanism for enhanced feature extraction and processing.

    This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
    capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.

    Attributes:
        c (int): Number of hidden channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.

    Methods:
        forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.

    Notes:
        This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.

    Examples:
        >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
        >>> input_tensor = torch.randn(1, 256, 64, 64)
        >>> output_tensor = c2psa(input_tensor)
    """

    def __init__(self, c1, c2, n=1, e=0.5):
        """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
        super().__init__()
        assert c1 == c2
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)

        self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))

    def forward(self, x):
        """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = self.m(b)
        return self.cv2(torch.cat((a, b), 1))


class C2fPSA(C2f):
    """
    C2fPSA module with enhanced feature extraction using PSA blocks.

    This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction.

    Attributes:
        c (int): Number of hidden channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        m (nn.ModuleList): List of PSA blocks for feature extraction.

    Methods:
        forward: Performs a forward pass through the C2fPSA module.
        forward_split: Performs a forward pass using split() instead of chunk().

    Examples:
        >>> import torch
        >>> from ultralytics.models.common import C2fPSA
        >>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5)
        >>> x = torch.randn(1, 64, 128, 128)
        >>> output = model(x)
        >>> print(output.shape)
    """

    def __init__(self, c1, c2, n=1, e=0.5):
        """Initializes the C2fPSA module, a variant of C2f with PSA blocks for enhanced feature extraction."""
        assert c1 == c2
        super().__init__(c1, c2, n=n, e=e)
        self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))



1.3 11 Detect介绍


分类检测头引入了DWConv(更加轻量级,为后续二次创新提供了改进点),结构图如下(和V8的区别):


实现代码ultralytics/nn/modules/head.py



        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
        )
        self.cv3 = nn.ModuleList(
            nn.Sequential(
                nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
                nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
                nn.Conv2d(c3, self.nc, 1),
            )
            for x in ch
        )


1.4 YOLO11和 YOLOv8的区别


-------------------------------   YOLO11   ----------------------------------
# Ultralytics YOLO , AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

-------------------------------   YOLOv8   ----------------------------------

# Ultralytics YOLO , AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs


2.如何训练YOLO11模型


2.1 如何训练NEU-DET数据集


2.1.1 数据集介绍


直接搬运v8的就能使用

2.1.2 超参数修改


位置如下default.yaml



2.1.3 如何训练


import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/11/yolo11-EMA_attention.yaml')
    #model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='data/NEU-DET.yaml',
                cache=False,
                imgsz=640,
                epochs=200,
                batch=8,
                close_mosaic=10,
                device='0',
                optimizer='SGD', # using SGD
                project='runs/train',
                name='exp',
                )



2.2 训练结果可视化结果


YOLO11n summary (fused): 238 layers, 2,583,322 parameters, 0 gradients, 6.3 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 21/21 [00:07<00:00,  2.93it/s]
                   all        324        747      0.765      0.679      0.768      0.433
               crazing         47        104      0.678      0.337      0.508       0.22
             inclusion         71        190      0.775      0.705       0.79      0.398
               patches         59        149      0.808      0.859      0.927      0.636
        pitted_surface         61         93       0.81      0.667      0.779      0.483
       rolled-in_scale         56        117      0.684      0.593       0.67      0.317
             scratches         54         94      0.833      0.915      0.934      0.544






?

?

相关推荐

Java项目宝塔搭建实战MES-Springboot开源MES智能制造系统源码

大家好啊,我是测评君,欢迎来到web测评。...

一个令人头秃的问题,Logback 日志级别设置竟然无效?

原文链接:https://mp.weixin.qq.com/s/EFvbFwetmXXA9ZGBGswUsQ原作者:小黑十一点半...

实战!SpringBoot + RabbitMQ死信队列实现超时关单

需求背景之为什么要有超时关单原因一:...

火了!阿里P8架构师编写堪称神级SpringBoot手册,GitHub星标99+

Springboot现在已成为企业面试中必备的知识点,以及企业应用的重要模块。今天小编给大家分享一份来着阿里P8架构师编写的...

Java本地搭建宝塔部署实战springboot仓库管理系统源码

大家好啊,我是测评君,欢迎来到web测评。...

工具尝鲜(1)-Fleet构建运行一个Springboot入门Web项目

Fleet是JetBrains公司推出的轻量级编辑器,对标VSCode。该款产品还在公测当中,具体下载链接如下JetBrainsFleet:由JetBrains打造的下一代IDE。想要尝试的...

SPRINGBOOT WEB 实现文件夹上传(保留目录结构)

网上搜到的SpringBoot的代码不多,完整的不多,能用的也不多,基本上大部分的文章只是提供了少量的代码,讲一下思路,或者实现方案。之前一般的做法都是使用HTML5来做的,大部都是传文件的,传文件夹...

Java项目本地部署宝塔搭建实战报修小程序springboot版系统源码

大家好啊,我是测评君,欢迎来到web测评。...

新年IT界大笑料“工行取得基于SpringBoot的web系统后端实现专利

先看看专利描述...

看完SpringBoot源码后,整个人都精神了

前言当读完SpringBoot源码后,被Spring的设计者们折服,Spring系列中没有几行代码是我们看不懂的,而是难在理解设计思路,阅读Spring、SpringMVC、SpringBoot需要花...

阿里大牛再爆神著:SpringBoot+Cloud微服务手册

今天给大家分享的这份“Springboot+Springcloud微服务开发实战手册”共有以下三大特点...

WebClient是什么?SpringBoot中如何使用WebClient?

WebClient是什么?WebClient是SpringFramework5引入的一个非阻塞、响应式的Web客户端库。它提供了一种简单而强大的方式来进行HTTP请求,并处理来自服务器的响应。与传...

SpringBoot系列——基于mui的H5套壳APP开发web框架

  前言  大致原理:创建一个main主页面,只有主页面有头部、尾部,中间内容嵌入iframe内容子页面,如果在当前页面进行跳转操作,也是在iframe中进行跳转,而如果点击尾部按钮切换模块、页面,那...

在Spring Boot中使用 jose4j 实现 JSON Web Token (JWT)

JSONWebToken或JWT作为服务之间安全通信的一种方式而闻名。...

Spring Boot使用AOP方式实现统一的Web请求日志记录?

AOP简介AOP(AspectOrientedProgramming),面相切面编程,是通过代码预编译与运行时动态代理的方式来实现程序的统一功能维护的方案。AOP作为Spring框架的核心内容,通...

取消回复欢迎 发表评论: