深度学习实战:手把手教你构建多任务、多标签模型
ztj100 2024-12-17 17:49 22 浏览 0 评论
多任务多标签模型是现代机器学习中的基础架构,这个任务在概念上很简单 -训练一个模型同时预测多个任务的多个输出。
在本文中,我们将基于流行的 MovieLens 数据集,使用稀疏特征来创建一个多任务多标签模型,并逐步介绍整个过程。所以本文我们将涵盖数据准备、模型构建、训练循环、模型诊断,最后使用 Ray Serve 部署模型的全部流程。
1. 设置环境
在深入代码之前,请确保安装了必要的库(以下不是详尽列表):
pip install pandas scikit-learn torch ray[serve] matplotlib requests tensorboard
我们在这里使用的数据集足够小,所以可以使用 CPU 进行训练。
2. 准备数据集
我们将从创建用于处理 MovieLens 数据集的下载、预处理的类开始,然后将数据分割为训练集和测试集。
MovieLens数据集包含有关用户、电影及其评分的信息,我们将用它来预测评分(回归任务)和用户是否喜欢这部电影(二元分类任务)。
import os
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import torch
from torch.utils.data import Dataset, DataLoader
import zipfile
import io
import requests
class MovieLensDataset(Dataset):
def __init__(self, dataset_version="small", data_dir="data"):
print("Initializing MovieLensDataset...")
if not os.path.exists(data_dir):
os.makedirs(data_dir)
if dataset_version == "small":
url = "https://files.grouplens.org/datasets/movielens/ml-latest-small.zip"
local_zip_path = os.path.join(data_dir, "ml-latest-small.zip")
file_path = 'ml-latest-small/ratings.csv'
parquet_path = os.path.join(data_dir, "ml-latest-small.parquet")
elif dataset_version == "full":
url = "https://files.grouplens.org/datasets/movielens/ml-latest.zip"
local_zip_path = os.path.join(data_dir, "ml-latest.zip")
file_path = 'ml-latest/ratings.csv'
parquet_path = os.path.join(data_dir, "ml-latest.parquet")
else:
raise ValueError("Invalid dataset_version. Choose 'small' or 'full'.")
if os.path.exists(parquet_path):
print(f"Loading dataset from {parquet_path}...")
movielens = pd.read_parquet(parquet_path)
else:
if not os.path.exists(local_zip_path):
print(f"Downloading {dataset_version} dataset from {url}...")
response = requests.get(url)
with open(local_zip_path, "wb") as f:
f.write(response.content)
with zipfile.ZipFile(local_zip_path, "r") as z:
with z.open(file_path) as f:
movielens = pd.read_csv(f, usecols=['userId', 'movieId', 'rating'], low_memory=True)
movielens.to_parquet(parquet_path, index=False)
movielens['liked'] = (movielens['rating'] >= 4).astype(int)
self.user_encoder = LabelEncoder()
self.movie_encoder = LabelEncoder()
movielens['user'] = self.user_encoder.fit_transform(movielens['userId'])
movielens['movie'] = self.movie_encoder.fit_transform(movielens['movieId'])
self.train_df, self.test_df = train_test_split(movielens, test_size=0.2, random_state=42)
def get_data(self, split="train"):
if split == "train":
data = self.train_df
elif split == "test":
data = self.test_df
else:
raise ValueError("Invalid split. Choose 'train' or 'test'.")
dense_features = torch.tensor(data[['user', 'movie']].values, dtype=torch.long)
labels = torch.tensor(data[['rating', 'liked']].values, dtype=torch.float32)
return dense_features, labels
def get_encoders(self):
return self.user_encoder, self.movie_encoder
定义了 MovieLensDataset,就可以将训练集和评估集加载到内存中
# Example usage with a single dataset object
print("Creating MovieLens dataset...")
# Feel free to use dataset_version="full" if you are using
# a GPU
dataset = MovieLensDataset(dataset_version="small")
print("Getting training data...")
train_dense_features, train_labels = dataset.get_data(split="train")
print("Getting testing data...")
test_dense_features, test_labels = dataset.get_data(split="test")
# Create DataLoader for training and testing
train_loader = DataLoader(torch.utils.data.TensorDataset(train_dense_features, train_labels), batch_size=64, shuffle=True)
test_loader = DataLoader(torch.utils.data.TensorDataset(test_dense_features, test_labels), batch_size=64, shuffle=False)
print("Accessing encoders...")
user_encoder, movie_encoder = dataset.get_encoders()
print("Setup complete.")
3. 定义多任务多标签模型
我们将定义一个基本的 PyTorch 模型,处理两个任务:预测评分(回归)和用户是否喜欢这部电影(二元分类)。
模型使用稀疏嵌入来表示用户和电影,并有共享层,这些共享层会输入到两个单独的输出层。
通过在任务之间共享一些层,并为每个特定任务的输出设置单独的层,该模型利用了共享表示,同时仍然针对每个任务定制其预测。
from torch import nn
class MultiTaskMovieLensModel(nn.Module):
def __init__(self, n_users, n_movies, embedding_size, hidden_size):
super(MultiTaskMovieLensModel, self).__init__()
self.user_embedding = nn.Embedding(n_users, embedding_size)
self.movie_embedding = nn.Embedding(n_movies, embedding_size)
self.shared_layer = nn.Linear(embedding_size * 2, hidden_size)
self.shared_activation = nn.ReLU()
self.task1_fc = nn.Linear(hidden_size, 1)
self.task2_fc = nn.Linear(hidden_size, 1)
self.task2_activation = nn.Sigmoid()
def forward(self, x):
user = x[:, 0]
movie = x[:, 1]
user_embed = self.user_embedding(user)
movie_embed = self.movie_embedding(movie)
combined = torch.cat((user_embed, movie_embed), dim=1)
shared_out = self.shared_activation(self.shared_layer(combined))
rating_out = self.task1_fc(shared_out)
liked_out = self.task2_fc(shared_out)
liked_out = self.task2_activation(liked_out)
return rating_out, liked_out
输入 (x) :
- 输入 x 预期是一个 2D 张量,其中每行包含一个用户 ID 和一个电影 ID。
用户和电影嵌入 :
- user = x[:, 0]: 从第一列提取用户 ID。
- movie = x[:, 1]: 从第二列提取电影 ID。
- user_embed 和 movie_embed 是对应这些 ID 的嵌入。
连接 :
- combined = torch.cat((user_embed, movie_embed), dim=1): 沿特征维度连接用户和电影嵌入。
共享层 :
- shared_out = self.shared_activation(self.shared_layer(combined)): 将组合的嵌入通过共享的全连接层和激活函数。
任务特定输出 :
- rating_out = self.task1_fc(shared_out): 从第一个任务特定层输出预测评分。
- liked_out = self.task2_fc(shared_out): 输出用户是否喜欢电影的原始分数。
- liked_out = self.task2_activation(liked_out): 原始分数通过 sigmoid 函数转换为概率。
返回 :
模型返回两个输出:
- rating_out: 预测的评分(回归输出)。
- liked_out: 用户喜欢电影的概率(分类输出)。
4. 训练循环
首先,用一些任意选择的超参数(嵌入维度和隐藏层中的神经元数量)实例化我们的模型。对于回归任务将使用均方误差损失,对于分类任务,将使用二元交叉熵。
我们可以通过它们的初始值来归一化两个损失,以确保它们都大致处于相似的尺度(这里也可以使用不确定性加权来归一化损失)
然后将使用数据加载器训练模型,并跟踪两个任务的损失。损失将被绘制成图表,以可视化模型在评估集上随时间的学习和泛化情况。
import torch.optim as optim
import matplotlib.pyplot as plt
# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
embedding_size = 16
hidden_size = 32
n_users = len(dataset.get_encoders()[0].classes_)
n_movies = len(dataset.get_encoders()[1].classes_)
model = MultiTaskMovieLensModel(n_users, n_movies, embedding_size, hidden_size).to(device)
criterion_rating = nn.MSELoss()
criterion_liked = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train_rating_losses, train_liked_losses = [], []
eval_rating_losses, eval_liked_losses = [], []
epochs = 10
# used for loss normalization
initial_loss_rating = None
initial_loss_liked = None
for epoch in range(epochs):
model.train()
running_loss_rating = 0.0
running_loss_liked = 0.0
for dense_features, labels in train_loader:
optimizer.zero_grad()
dense_features = dense_features.to(device)
labels = labels.to(device)
rating_pred, liked_pred = model(dense_features)
rating_target = labels[:, 0].unsqueeze(1)
liked_target = labels[:, 1].unsqueeze(1)
loss_rating = criterion_rating(rating_pred, rating_target)
loss_liked = criterion_liked(liked_pred, liked_target)
# Set initial losses
if initial_loss_rating is None:
initial_loss_rating = loss_rating.item()
if initial_loss_liked is None:
initial_loss_liked = loss_liked.item()
# Normalize losses
loss = (loss_rating / initial_loss_rating) + (loss_liked / initial_loss_liked)
loss.backward()
optimizer.step()
running_loss_rating += loss_rating.item()
running_loss_liked += loss_liked.item()
train_rating_losses.append(running_loss_rating / len(train_loader))
train_liked_losses.append(running_loss_liked / len(train_loader))
model.eval()
eval_loss_rating = 0.0
eval_loss_liked = 0.0
with torch.no_grad():
for dense_features, labels in test_loader:
dense_features = dense_features.to(device)
labels = labels.to(device)
rating_pred, liked_pred = model(dense_features)
rating_target = labels[:, 0].unsqueeze(1)
liked_target = labels[:, 1].unsqueeze(1)
loss_rating = criterion_rating(rating_pred, rating_target)
loss_liked = criterion_liked(liked_pred, liked_target)
eval_loss_rating += loss_rating.item()
eval_loss_liked += loss_liked.item()
eval_rating_losses.append(eval_loss_rating / len(test_loader))
eval_liked_losses.append(eval_loss_liked / len(test_loader))
print(f'Epoch {epoch+1}, Train Rating Loss: {train_rating_losses[-1]}, Train Liked Loss: {train_liked_losses[-1]}, Eval Rating Loss: {eval_rating_losses[-1]}, Eval Liked Loss: {eval_liked_losses[-1]}')
# Plotting losses
plt.figure(figsize=(14, 6))
plt.subplot(1, 2, 1)
plt.plot(train_rating_losses, label='Train Rating Loss')
plt.plot(eval_rating_losses, label='Eval Rating Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Rating Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(train_liked_losses, label='Train Liked Loss')
plt.plot(eval_liked_losses, label='Eval Liked Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Liked Loss')
plt.legend()
plt.tight_layout()
plt.show()
还可以通过利用 Tensorboard 监控训练的过程
from torch.utils.tensorboard import SummaryWriter
# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Model and Training Setup
embedding_size = 16
hidden_size = 32
n_users = len(user_encoder.classes_)
n_movies = len(movie_encoder.classes_)
model = MultiTaskMovieLensModel(n_users, n_movies, embedding_size, hidden_size).to(device)
criterion_rating = nn.MSELoss()
criterion_liked = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
epochs = 10
# used for loss normalization
initial_loss_rating = None
initial_loss_liked = None
# TensorBoard setup
writer = SummaryWriter(log_dir='runs/multitask_movie_lens')
# Training Loop with TensorBoard Logging
for epoch in range(epochs):
model.train()
running_loss_rating = 0.0
running_loss_liked = 0.0
for batch_idx, (dense_features, labels) in enumerate(train_loader):
# Move data to GPU
dense_features = dense_features.to(device)
labels = labels.to(device)
optimizer.zero_grad()
rating_pred, liked_pred = model(dense_features)
rating_target = labels[:, 0].unsqueeze(1)
liked_target = labels[:, 1].unsqueeze(1)
loss_rating = criterion_rating(rating_pred, rating_target)
loss_liked = criterion_liked(liked_pred, liked_target)
# Set initial losses
if initial_loss_rating is None:
initial_loss_rating = loss_rating.item()
if initial_loss_liked is None:
initial_loss_liked = loss_liked.item()
# Normalize losses
loss = (loss_rating / initial_loss_rating) + (loss_liked / initial_loss_liked)
loss.backward()
optimizer.step()
running_loss_rating += loss_rating.item()
running_loss_liked += loss_liked.item()
# Log loss to TensorBoard
writer.add_scalar('Loss/Train_Rating', loss_rating.item(), epoch * len(train_loader) + batch_idx)
writer.add_scalar('Loss/Train_Liked', loss_liked.item(), epoch * len(train_loader) + batch_idx)
print(f'Epoch {epoch+1}/{epochs}, Train Rating Loss: {running_loss_rating / len(train_loader)}, Train Liked Loss: {running_loss_liked / len(train_loader)}')
# Evaluate on the test set
model.eval()
eval_loss_rating = 0.0
eval_loss_liked = 0.0
with torch.no_grad():
for dense_features, labels in test_loader:
# Move data to GPU
dense_features = dense_features.to(device)
labels = labels.to(device)
rating_pred, liked_pred = model(dense_features)
rating_target = labels[:, 0].unsqueeze(1)
liked_target = labels[:, 1].unsqueeze(1)
loss_rating = criterion_rating(rating_pred, rating_target)
loss_liked = criterion_liked(liked_pred, liked_target)
eval_loss_rating += loss_rating.item()
eval_loss_liked += loss_liked.item()
eval_loss_avg_rating = eval_loss_rating / len(test_loader)
eval_loss_avg_liked = eval_loss_liked / len(test_loader)
print(f'Epoch {epoch+1}/{epochs}, Eval Rating Loss: {eval_loss_avg_rating}, Eval Liked Loss: {eval_loss_avg_liked}')
# Log evaluation loss to TensorBoard
writer.add_scalar('Loss/Eval_Rating', eval_loss_avg_rating, epoch)
writer.add_scalar('Loss/Eval_Liked', eval_loss_avg_liked, epoch)
# Close the TensorBoard writer
writer.close()
我们在同一目录下运行 TensorBoard 来启动服务器,并在网络浏览器中检查训练和评估曲线。在以下 bash 命令中,将 runs/mutlitask_movie_lens 替换为包含事件文件(日志)的目录路径。
(base) $ tensorboard --logdir=runs/multitask_movie_lens
TensorFlow installation not found - running with reduced feature set.
运行结果如下:
NOTE: Using experimental fast data loading logic. To disable, pass
"--load_fast=false" and report issues on GitHub. More details:
<https://github.com/tensorflow/tensorboard/issues/4784>
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.12.0 at <http://localhost:6006/> (Press CTRL+C to quit)
Tensorboard 损失曲线视图如上所示
5. 推理
在训练完成后要使用 torch.save 函数将模型保存到磁盘。这个函数允许你保存模型的状态字典,其中包含模型的所有参数和缓冲区。保存的文件通常使用 .pth 或 .pt 扩展名。
import torch
torch.save(model.state_dict(), "model.pth")
状态字典包含所有模型参数(权重和偏置),当想要将模型加载回代码中时,可以使用以下步骤:
# Initialize the model (make sure the architecture matches the saved model)
model = MultiTaskMovieLensModel(n_users, n_movies, embedding_size, hidden_size)
# Load the saved state dictionary into the model
model.load_state_dict(torch.load("model.pth"))
# Set the model to evaluation mode (important for inference)
model.eval()
为了在一些未见过的数据上评估模型,可以对单个用户-电影对进行预测,并将它们与实际值进行比较。
def predict_and_compare(user_id, movie_id, model, user_encoder, movie_encoder, train_dataset, test_dataset):
user_idx = user_encoder.transform([user_id])[0]
movie_idx = movie_encoder.transform([movie_id])[0]
example_user = torch.tensor([[user_idx]], dtype=torch.long)
example_movie = torch.tensor([[movie_idx]], dtype=torch.long)
example_dense_features = torch.cat((example_user, example_movie), dim=1)
model.eval()
with torch.no_grad():
rating_pred, liked_pred = model(example_dense_features)
predicted_rating = rating_pred.item()
predicted_liked = liked_pred.item()
actual_row = train_dataset.data[(train_dataset.data['userId'] == user_id) & (train_dataset.data['movieId'] == movie_id)]
if actual_row.empty:
actual_row = test_dataset.data[(test_dataset.data['userId'] == user_id) & (test_dataset.data['movieId'] == movie_id)]
if not actual_row.empty:
actual_rating = actual_row['rating'].values[0]
actual_liked = actual_row['liked'].values[0]
return {
'User ID': user_id,
'Movie ID': movie_id,
'Predicted Rating': round(predicted_rating, 2),
'Actual Rating': actual_rating,
'Predicted Liked': 'Yes' if predicted_liked >= 0.5 else 'No',
'Actual Liked': 'Yes' if actual_liked == 1 else 'No'
}
else:
return None
example_pairs = test_dataset.data.sample(n=5)
results = []
for _, row in example_pairs.iterrows():
user_id = row['userId']
movie_id = row['movieId']
result = predict_and_compare(user_id, movie_id, model, user_encoder, movie_encoder, train_dataset, test_dataset)
if result:
results.append(result)
results_df = pd.DataFrame(results)
results_df.head()
6. 使用 Ray Serve 部署模型
最后就是将模型部署为一个服务,使其可以通过 API 访问,这里使用使用 Ray Serve。
使用 Ray Serve是因为它可以从单机无缝扩展到大型集群,可以处理不断增加的负载。Ray Serve 还集成了 Ray 的仪表板,为监控部署的健康状况、性能和资源使用提供了用户友好的界面。
步骤 1:加载训练好的模型
# Load your trained model (assuming it's saved as 'model.pth')
n_users = 1000 # 示例值,替换为实际用户数
n_movies = 1000 # 示例值,替换为实际电影数
embedding_size = 16
hidden_size = 32
model = MultiTaskMovieLensModel(n_users, n_movies, embedding_size, hidden_size)
model.load_state_dict(torch.load("model.pth"))
model.eval()
步骤 2:定义模型服务类
import ray
from ray import serve
@serve.deployment
class ModelServeDeployment:
def __init__(self, model):
self.model = model
self.model.eval()
async def __call__(self, request):
json_input = await request.json()
user_id = torch.tensor([json_input["user_id"]])
movie_id = torch.tensor([json_input["movie_id"]])
with torch.no_grad():
rating_pred, liked_pred = self.model(user_id, movie_id)
return {
"rating_prediction": rating_pred.item(),
"liked_prediction": liked_pred.item()
}
步骤 3:初始化 Ray 服务器
# 初始化 Ray 和 Ray Serve
ray.init()
serve.start()
# 部署模型
model_deployment = ModelServeDeployment.bind(model)
serve.run(model_deployment)
现在应该能够在 localhost:8265 看到 ray 服务器
步骤 4:查询模型
最后就是测试 API 了。运行以下代码行时,应该可以看到一个响应,其中包含查询用户和电影的评分和喜欢预测
import requests
# 定义服务器地址(Ray Serve 默认为 http://127.0.0.1:8000)
url = "http://127.0.0.1:8000/ModelServeDeployment"
# 示例输入
data = {
"user_id": 123, # 替换为实际用户 ID
"movie_id": 456 # 替换为实际电影 ID
}
# 向模型服务器发送 POST 请求
response = requests.post(url, json=data)
# 打印模型的响应
print(response.json())
就是这样,我们刚刚训练并部署了一个多任务多标签模型!
作者:Cole Diamond
相关推荐
-
- SpringBoot如何实现优雅的参数校验
-
平常业务中肯定少不了校验,如果我们把大量的校验代码夹杂到业务中,肯定是不优雅的,对于一些简单的校验,我们可以使用java为我们提供的api进行处理,同时对于一些...
-
2025-05-11 19:46 ztj100
- Java中的空指针怎么处理?
-
#暑期创作大赛#Java程序员工作中遇到最多的错误就是空指针异常,无论你多么细心,一不留神就从代码的某个地方冒出NullPointerException,令人头疼。...
- 一坨一坨 if/else 参数校验,被 SpringBoot 参数校验组件整干净了
-
来源:https://mp.weixin.qq.com/s/ZVOiT-_C3f-g7aj3760Q-g...
- 用了这两款插件,同事再也不说我代码写的烂了
-
同事:你的代码写的不行啊,不够规范啊。我:我写的代码怎么可能不规范,不要胡说。于是同事打开我的IDEA,安装了一个插件,然后执行了一下,规范不规范,看报告吧。这可怎么是好,这玩意竟然给我挑出来这么...
- SpringBoot中6种拦截器使用场景
-
SpringBoot中6种拦截器使用场景,下面是思维导图详细总结一、拦截器基础...
- 用注解进行参数校验,spring validation介绍、使用、实现原理分析
-
springvalidation是什么在平时的需求开发中,经常会有参数校验的需求,比如一个接收用户注册请求的接口,要校验用户传入的用户名不能为空、用户名长度不超过20个字符、传入的手机号是合法的手机...
- 快速上手:SpringBoot自定义请求参数校验
-
作者:UncleChen来源:http://unclechen.github.io/最近在工作中遇到写一些API,这些API的请求参数非常多,嵌套也非常复杂,如果参数的校验代码全部都手动去实现,写起来...
- 分布式微服务架构组件
-
1、服务发现-Nacos服务发现、配置管理、服务治理及管理,同类产品还有ZooKeeper、Eureka、Consulhttps://nacos.io/zh-cn/docs/what-is-nacos...
- 优雅的参数校验,告别冗余if-else
-
一、参数校验简介...
- Spring Boot断言深度指南:用断言机制为代码构筑健壮防线
-
在SpringBoot开发中,断言(Assert)如同代码的"体检医生",能在上线前精准捕捉业务逻辑漏洞。本文将结合企业级实践,解析如何通过断言机制实现代码自检、异常预警与性能优化三...
- 如何在项目中优雅的校验参数
-
本文看点前言验证数据是贯穿所有应用程序层(从表示层到持久层)的常见任务。通常在每一层实现相同的验证逻辑,这既费时又容易出错。为了避免重复这些验证,开发人员经常将验证逻辑直接捆绑到域模型中,将域类与验证...
- SpingBoot项目使用@Validated和@Valid参数校验
-
一、什么是参数校验?我们在后端开发中,经常遇到的一个问题就是入参校验。简单来说就是对一个方法入参的参数进行校验,看是否符合我们的要求。比如入参要求是一个金额,你前端没做限制,用户随便过来一个负数,或者...
- 28个验证注解,通过业务案例让你精通Java数据校验(收藏篇)
-
在现代软件开发中,数据验证是确保应用程序健壮性和可靠性的关键环节。JavaBeanValidation(JSR380)作为一个功能强大的规范,为我们提供了一套全面的注解工具集,这些注解能够帮...
- Springboot @NotBlank参数校验失效汇总
-
有时候明明一个微服务里的@Validated和@NotBlank用的好好的,但就是另一个里不能用,这时候问题是最不好排查的,下面列举了各种失效情况的汇总,供各位参考:1、版本问题springbo...
- 这可能是最全面的Spring面试八股文了
-
Spring是什么?Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)