百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

深度学习实战:手把手教你构建多任务、多标签模型

ztj100 2024-12-17 17:49 22 浏览 0 评论

多任务多标签模型是现代机器学习中的基础架构,这个任务在概念上很简单 -训练一个模型同时预测多个任务的多个输出。

在本文中,我们将基于流行的 MovieLens 数据集,使用稀疏特征来创建一个多任务多标签模型,并逐步介绍整个过程。所以本文我们将涵盖数据准备、模型构建、训练循环、模型诊断,最后使用 Ray Serve 部署模型的全部流程。

1. 设置环境

在深入代码之前,请确保安装了必要的库(以下不是详尽列表):

pip install pandas scikit-learn torch ray[serve] matplotlib requests tensorboard

我们在这里使用的数据集足够小,所以可以使用 CPU 进行训练。

2. 准备数据集

我们将从创建用于处理 MovieLens 数据集的下载、预处理的类开始,然后将数据分割为训练集和测试集。

MovieLens数据集包含有关用户、电影及其评分的信息,我们将用它来预测评分(回归任务)和用户是否喜欢这部电影(二元分类任务)。

import os 
import pandas as pd 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import LabelEncoder 
import torch 
from torch.utils.data import Dataset, DataLoader 
import zipfile 
import io 
import requests 

class MovieLensDataset(Dataset): 

def __init__(self, dataset_version="small", data_dir="data"): 
print("Initializing MovieLensDataset...") 
if not os.path.exists(data_dir): 
os.makedirs(data_dir) 

if dataset_version == "small": 
url = "https://files.grouplens.org/datasets/movielens/ml-latest-small.zip" 
local_zip_path = os.path.join(data_dir, "ml-latest-small.zip") 
file_path = 'ml-latest-small/ratings.csv' 
parquet_path = os.path.join(data_dir, "ml-latest-small.parquet") 
elif dataset_version == "full": 
url = "https://files.grouplens.org/datasets/movielens/ml-latest.zip" 
local_zip_path = os.path.join(data_dir, "ml-latest.zip") 
file_path = 'ml-latest/ratings.csv' 
parquet_path = os.path.join(data_dir, "ml-latest.parquet") 
else: 
raise ValueError("Invalid dataset_version. Choose 'small' or 'full'.") 

if os.path.exists(parquet_path): 
print(f"Loading dataset from {parquet_path}...") 
movielens = pd.read_parquet(parquet_path) 
else: 
if not os.path.exists(local_zip_path): 
print(f"Downloading {dataset_version} dataset from {url}...") 
response = requests.get(url) 
with open(local_zip_path, "wb") as f: 
f.write(response.content) 

with zipfile.ZipFile(local_zip_path, "r") as z: 
with z.open(file_path) as f: 
movielens = pd.read_csv(f, usecols=['userId', 'movieId', 'rating'], low_memory=True) 
movielens.to_parquet(parquet_path, index=False) 
movielens['liked'] = (movielens['rating'] >= 4).astype(int) 
self.user_encoder = LabelEncoder() 
self.movie_encoder = LabelEncoder() 
movielens['user'] = self.user_encoder.fit_transform(movielens['userId']) 
movielens['movie'] = self.movie_encoder.fit_transform(movielens['movieId']) 
self.train_df, self.test_df = train_test_split(movielens, test_size=0.2, random_state=42) 

def get_data(self, split="train"): 
if split == "train": 
data = self.train_df 
elif split == "test": 
data = self.test_df 
else: 
raise ValueError("Invalid split. Choose 'train' or 'test'.") 

dense_features = torch.tensor(data[['user', 'movie']].values, dtype=torch.long) 
labels = torch.tensor(data[['rating', 'liked']].values, dtype=torch.float32) 

return dense_features, labels 

def get_encoders(self): 
return self.user_encoder, self.movie_encoder

定义了 MovieLensDataset,就可以将训练集和评估集加载到内存中

# Example usage with a single dataset object 
print("Creating MovieLens dataset...") 
# Feel free to use dataset_version="full" if you are using 
# a GPU 
dataset = MovieLensDataset(dataset_version="small") 

print("Getting training data...") 
train_dense_features, train_labels = dataset.get_data(split="train") 
print("Getting testing data...") 
test_dense_features, test_labels = dataset.get_data(split="test") 
# Create DataLoader for training and testing 
train_loader = DataLoader(torch.utils.data.TensorDataset(train_dense_features, train_labels), batch_size=64, shuffle=True) 
test_loader = DataLoader(torch.utils.data.TensorDataset(test_dense_features, test_labels), batch_size=64, shuffle=False) 
print("Accessing encoders...") 
user_encoder, movie_encoder = dataset.get_encoders() 
print("Setup complete.")

3. 定义多任务多标签模型

我们将定义一个基本的 PyTorch 模型,处理两个任务:预测评分(回归)和用户是否喜欢这部电影(二元分类)。

模型使用稀疏嵌入来表示用户和电影,并有共享层,这些共享层会输入到两个单独的输出层。

通过在任务之间共享一些层,并为每个特定任务的输出设置单独的层,该模型利用了共享表示,同时仍然针对每个任务定制其预测。

from torch import nn 

class MultiTaskMovieLensModel(nn.Module): 
def __init__(self, n_users, n_movies, embedding_size, hidden_size): 
super(MultiTaskMovieLensModel, self).__init__() 
self.user_embedding = nn.Embedding(n_users, embedding_size) 
self.movie_embedding = nn.Embedding(n_movies, embedding_size) 
self.shared_layer = nn.Linear(embedding_size * 2, hidden_size) 
self.shared_activation = nn.ReLU() 
self.task1_fc = nn.Linear(hidden_size, 1) 
self.task2_fc = nn.Linear(hidden_size, 1) 
self.task2_activation = nn.Sigmoid() 

def forward(self, x): 
user = x[:, 0] 
movie = x[:, 1] 
user_embed = self.user_embedding(user) 
movie_embed = self.movie_embedding(movie) 
combined = torch.cat((user_embed, movie_embed), dim=1) 
shared_out = self.shared_activation(self.shared_layer(combined)) 
rating_out = self.task1_fc(shared_out) 
liked_out = self.task2_fc(shared_out) 
liked_out = self.task2_activation(liked_out) 
return rating_out, liked_out

输入 (x) :

  • 输入 x 预期是一个 2D 张量,其中每行包含一个用户 ID 和一个电影 ID。

用户和电影嵌入 :

  • user = x[:, 0]: 从第一列提取用户 ID。
  • movie = x[:, 1]: 从第二列提取电影 ID。
  • user_embed 和 movie_embed 是对应这些 ID 的嵌入。

连接 :

  • combined = torch.cat((user_embed, movie_embed), dim=1): 沿特征维度连接用户和电影嵌入。

共享层 :

  • shared_out = self.shared_activation(self.shared_layer(combined)): 将组合的嵌入通过共享的全连接层和激活函数。

任务特定输出 :

  • rating_out = self.task1_fc(shared_out): 从第一个任务特定层输出预测评分。
  • liked_out = self.task2_fc(shared_out): 输出用户是否喜欢电影的原始分数。
  • liked_out = self.task2_activation(liked_out): 原始分数通过 sigmoid 函数转换为概率。

返回 :

模型返回两个输出:

  • rating_out: 预测的评分(回归输出)。
  • liked_out: 用户喜欢电影的概率(分类输出)。

4. 训练循环

首先,用一些任意选择的超参数(嵌入维度和隐藏层中的神经元数量)实例化我们的模型。对于回归任务将使用均方误差损失,对于分类任务,将使用二元交叉熵。

我们可以通过它们的初始值来归一化两个损失,以确保它们都大致处于相似的尺度(这里也可以使用不确定性加权来归一化损失)

然后将使用数据加载器训练模型,并跟踪两个任务的损失。损失将被绘制成图表,以可视化模型在评估集上随时间的学习和泛化情况。

import torch.optim as optim 
import matplotlib.pyplot as plt 

# Check if GPU is available 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
print(f"Using device: {device}") 
embedding_size = 16 
hidden_size = 32 
n_users = len(dataset.get_encoders()[0].classes_) 
n_movies = len(dataset.get_encoders()[1].classes_) 
model = MultiTaskMovieLensModel(n_users, n_movies, embedding_size, hidden_size).to(device) 
criterion_rating = nn.MSELoss() 
criterion_liked = nn.BCELoss() 
optimizer = optim.Adam(model.parameters(), lr=0.001) 
train_rating_losses, train_liked_losses = [], [] 
eval_rating_losses, eval_liked_losses = [], [] 
epochs = 10 

# used for loss normalization 
initial_loss_rating = None 
initial_loss_liked = None 

for epoch in range(epochs): 
model.train() 
running_loss_rating = 0.0 
running_loss_liked = 0.0 

for dense_features, labels in train_loader: 
optimizer.zero_grad() 
dense_features = dense_features.to(device) 
labels = labels.to(device) 

rating_pred, liked_pred = model(dense_features) 
rating_target = labels[:, 0].unsqueeze(1) 
liked_target = labels[:, 1].unsqueeze(1) 

loss_rating = criterion_rating(rating_pred, rating_target) 
loss_liked = criterion_liked(liked_pred, liked_target) 

# Set initial losses 
if initial_loss_rating is None: 
initial_loss_rating = loss_rating.item() 
if initial_loss_liked is None: 
initial_loss_liked = loss_liked.item() 

# Normalize losses 
loss = (loss_rating / initial_loss_rating) + (loss_liked / initial_loss_liked) 

loss.backward() 
optimizer.step() 

running_loss_rating += loss_rating.item() 
running_loss_liked += loss_liked.item() 

train_rating_losses.append(running_loss_rating / len(train_loader)) 
train_liked_losses.append(running_loss_liked / len(train_loader)) 

model.eval() 
eval_loss_rating = 0.0 
eval_loss_liked = 0.0 

with torch.no_grad(): 
for dense_features, labels in test_loader: 
dense_features = dense_features.to(device) 
labels = labels.to(device) 

rating_pred, liked_pred = model(dense_features) 
rating_target = labels[:, 0].unsqueeze(1) 
liked_target = labels[:, 1].unsqueeze(1) 

loss_rating = criterion_rating(rating_pred, rating_target) 
loss_liked = criterion_liked(liked_pred, liked_target) 

eval_loss_rating += loss_rating.item() 
eval_loss_liked += loss_liked.item() 

eval_rating_losses.append(eval_loss_rating / len(test_loader)) 
eval_liked_losses.append(eval_loss_liked / len(test_loader)) 
print(f'Epoch {epoch+1}, Train Rating Loss: {train_rating_losses[-1]}, Train Liked Loss: {train_liked_losses[-1]}, Eval Rating Loss: {eval_rating_losses[-1]}, Eval Liked Loss: {eval_liked_losses[-1]}') 
# Plotting losses 
plt.figure(figsize=(14, 6)) 
plt.subplot(1, 2, 1) 
plt.plot(train_rating_losses, label='Train Rating Loss') 
plt.plot(eval_rating_losses, label='Eval Rating Loss') 
plt.xlabel('Epoch') 
plt.ylabel('Loss') 
plt.title('Rating Loss') 
plt.legend() 
plt.subplot(1, 2, 2) 
plt.plot(train_liked_losses, label='Train Liked Loss') 
plt.plot(eval_liked_losses, label='Eval Liked Loss') 
plt.xlabel('Epoch') 
plt.ylabel('Loss') 
plt.title('Liked Loss') 
plt.legend() 
plt.tight_layout() 
plt.show()

还可以通过利用 Tensorboard 监控训练的过程

from torch.utils.tensorboard import SummaryWriter 
# Check if GPU is available 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
print(f"Using device: {device}") 
# Model and Training Setup 
embedding_size = 16 
hidden_size = 32 
n_users = len(user_encoder.classes_) 
n_movies = len(movie_encoder.classes_) 
model = MultiTaskMovieLensModel(n_users, n_movies, embedding_size, hidden_size).to(device) 
criterion_rating = nn.MSELoss() 
criterion_liked = nn.BCELoss() 
optimizer = optim.Adam(model.parameters(), lr=0.001) 
epochs = 10 

# used for loss normalization 
initial_loss_rating = None 
initial_loss_liked = None 

# TensorBoard setup 
writer = SummaryWriter(log_dir='runs/multitask_movie_lens') 

# Training Loop with TensorBoard Logging 
for epoch in range(epochs): 
model.train() 
running_loss_rating = 0.0 
running_loss_liked = 0.0 
for batch_idx, (dense_features, labels) in enumerate(train_loader): 
# Move data to GPU 
dense_features = dense_features.to(device) 
labels = labels.to(device) 

optimizer.zero_grad() 

rating_pred, liked_pred = model(dense_features) 
rating_target = labels[:, 0].unsqueeze(1) 
liked_target = labels[:, 1].unsqueeze(1) 

loss_rating = criterion_rating(rating_pred, rating_target) 
loss_liked = criterion_liked(liked_pred, liked_target) 

# Set initial losses 
if initial_loss_rating is None: 
initial_loss_rating = loss_rating.item() 
if initial_loss_liked is None: 
initial_loss_liked = loss_liked.item() 

# Normalize losses 
loss = (loss_rating / initial_loss_rating) + (loss_liked / initial_loss_liked) 

loss.backward() 
optimizer.step() 

running_loss_rating += loss_rating.item() 
running_loss_liked += loss_liked.item() 

# Log loss to TensorBoard 
writer.add_scalar('Loss/Train_Rating', loss_rating.item(), epoch * len(train_loader) + batch_idx) 
writer.add_scalar('Loss/Train_Liked', loss_liked.item(), epoch * len(train_loader) + batch_idx) 

print(f'Epoch {epoch+1}/{epochs}, Train Rating Loss: {running_loss_rating / len(train_loader)}, Train Liked Loss: {running_loss_liked / len(train_loader)}') 

# Evaluate on the test set 
model.eval() 
eval_loss_rating = 0.0 
eval_loss_liked = 0.0 
with torch.no_grad(): 
for dense_features, labels in test_loader: 
# Move data to GPU 
dense_features = dense_features.to(device) 
labels = labels.to(device) 

rating_pred, liked_pred = model(dense_features) 
rating_target = labels[:, 0].unsqueeze(1) 
liked_target = labels[:, 1].unsqueeze(1) 

loss_rating = criterion_rating(rating_pred, rating_target) 
loss_liked = criterion_liked(liked_pred, liked_target) 
eval_loss_rating += loss_rating.item() 
eval_loss_liked += loss_liked.item() 

eval_loss_avg_rating = eval_loss_rating / len(test_loader) 
eval_loss_avg_liked = eval_loss_liked / len(test_loader) 
print(f'Epoch {epoch+1}/{epochs}, Eval Rating Loss: {eval_loss_avg_rating}, Eval Liked Loss: {eval_loss_avg_liked}') 

# Log evaluation loss to TensorBoard 
writer.add_scalar('Loss/Eval_Rating', eval_loss_avg_rating, epoch) 
writer.add_scalar('Loss/Eval_Liked', eval_loss_avg_liked, epoch) 
# Close the TensorBoard writer 
writer.close()

我们在同一目录下运行 TensorBoard 来启动服务器,并在网络浏览器中检查训练和评估曲线。在以下 bash 命令中,将 runs/mutlitask_movie_lens 替换为包含事件文件(日志)的目录路径。

(base) $ tensorboard --logdir=runs/multitask_movie_lens 
TensorFlow installation not found - running with reduced feature set.

运行结果如下:

NOTE: Using experimental fast data loading logic. To disable, pass 
"--load_fast=false" and report issues on GitHub. More details: 
<https://github.com/tensorflow/tensorboard/issues/4784>
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all 
TensorBoard 2.12.0 at <http://localhost:6006/> (Press CTRL+C to quit)

Tensorboard 损失曲线视图如上所示

5. 推理

在训练完成后要使用 torch.save 函数将模型保存到磁盘。这个函数允许你保存模型的状态字典,其中包含模型的所有参数和缓冲区。保存的文件通常使用 .pth 或 .pt 扩展名。

import torch 
torch.save(model.state_dict(), "model.pth")

状态字典包含所有模型参数(权重和偏置),当想要将模型加载回代码中时,可以使用以下步骤:

# Initialize the model (make sure the architecture matches the saved model) 
model = MultiTaskMovieLensModel(n_users, n_movies, embedding_size, hidden_size) 

# Load the saved state dictionary into the model 
model.load_state_dict(torch.load("model.pth")) 

# Set the model to evaluation mode (important for inference) 
model.eval()

为了在一些未见过的数据上评估模型,可以对单个用户-电影对进行预测,并将它们与实际值进行比较。

def predict_and_compare(user_id, movie_id, model, user_encoder, movie_encoder, train_dataset, test_dataset): 
user_idx = user_encoder.transform([user_id])[0] 
movie_idx = movie_encoder.transform([movie_id])[0] 
example_user = torch.tensor([[user_idx]], dtype=torch.long) 
example_movie = torch.tensor([[movie_idx]], dtype=torch.long) 
example_dense_features = torch.cat((example_user, example_movie), dim=1) 
model.eval() 
with torch.no_grad(): 
rating_pred, liked_pred = model(example_dense_features) 
predicted_rating = rating_pred.item() 
predicted_liked = liked_pred.item() 
actual_row = train_dataset.data[(train_dataset.data['userId'] == user_id) & (train_dataset.data['movieId'] == movie_id)] 
if actual_row.empty: 
actual_row = test_dataset.data[(test_dataset.data['userId'] == user_id) & (test_dataset.data['movieId'] == movie_id)] 
if not actual_row.empty: 
actual_rating = actual_row['rating'].values[0] 
actual_liked = actual_row['liked'].values[0] 
return { 
'User ID': user_id, 
'Movie ID': movie_id, 
'Predicted Rating': round(predicted_rating, 2), 
'Actual Rating': actual_rating, 
'Predicted Liked': 'Yes' if predicted_liked >= 0.5 else 'No', 
'Actual Liked': 'Yes' if actual_liked == 1 else 'No' 
} 
else: 
return None 
example_pairs = test_dataset.data.sample(n=5) 
results = [] 
for _, row in example_pairs.iterrows(): 
user_id = row['userId'] 
movie_id = row['movieId'] 
result = predict_and_compare(user_id, movie_id, model, user_encoder, movie_encoder, train_dataset, test_dataset) 
if result: 
results.append(result) 
results_df = pd.DataFrame(results) 
results_df.head()

6. 使用 Ray Serve 部署模型

最后就是将模型部署为一个服务,使其可以通过 API 访问,这里使用使用 Ray Serve。

使用 Ray Serve是因为它可以从单机无缝扩展到大型集群,可以处理不断增加的负载。Ray Serve 还集成了 Ray 的仪表板,为监控部署的健康状况、性能和资源使用提供了用户友好的界面。

步骤 1:加载训练好的模型

# Load your trained model (assuming it's saved as 'model.pth') 
n_users = 1000 # 示例值,替换为实际用户数 
n_movies = 1000 # 示例值,替换为实际电影数 
embedding_size = 16 
hidden_size = 32 
model = MultiTaskMovieLensModel(n_users, n_movies, embedding_size, hidden_size) 
model.load_state_dict(torch.load("model.pth")) 
model.eval()

步骤 2:定义模型服务类

import ray 
from ray import serve 
@serve.deployment 
class ModelServeDeployment: 
def __init__(self, model): 
self.model = model 
self.model.eval() 
async def __call__(self, request): 
json_input = await request.json() 
user_id = torch.tensor([json_input["user_id"]]) 
movie_id = torch.tensor([json_input["movie_id"]]) 
with torch.no_grad(): 
rating_pred, liked_pred = self.model(user_id, movie_id) 
return { 
"rating_prediction": rating_pred.item(), 
"liked_prediction": liked_pred.item() 
}

步骤 3:初始化 Ray 服务器

# 初始化 Ray 和 Ray Serve 
ray.init() 
serve.start() 
# 部署模型 
model_deployment = ModelServeDeployment.bind(model) 
serve.run(model_deployment)

现在应该能够在 localhost:8265 看到 ray 服务器

步骤 4:查询模型

最后就是测试 API 了。运行以下代码行时,应该可以看到一个响应,其中包含查询用户和电影的评分和喜欢预测

import requests 

# 定义服务器地址(Ray Serve 默认为 http://127.0.0.1:8000) 
url = "http://127.0.0.1:8000/ModelServeDeployment" 
# 示例输入 
data = { 
"user_id": 123, # 替换为实际用户 ID 
"movie_id": 456 # 替换为实际电影 ID 
} 
# 向模型服务器发送 POST 请求 
response = requests.post(url, json=data) 
# 打印模型的响应 
print(response.json())

就是这样,我们刚刚训练并部署了一个多任务多标签模型!

作者:Cole Diamond

相关推荐

SpringBoot如何实现优雅的参数校验
SpringBoot如何实现优雅的参数校验

平常业务中肯定少不了校验,如果我们把大量的校验代码夹杂到业务中,肯定是不优雅的,对于一些简单的校验,我们可以使用java为我们提供的api进行处理,同时对于一些...

2025-05-11 19:46 ztj100

Java中的空指针怎么处理?

#暑期创作大赛#Java程序员工作中遇到最多的错误就是空指针异常,无论你多么细心,一不留神就从代码的某个地方冒出NullPointerException,令人头疼。...

一坨一坨 if/else 参数校验,被 SpringBoot 参数校验组件整干净了

来源:https://mp.weixin.qq.com/s/ZVOiT-_C3f-g7aj3760Q-g...

用了这两款插件,同事再也不说我代码写的烂了

同事:你的代码写的不行啊,不够规范啊。我:我写的代码怎么可能不规范,不要胡说。于是同事打开我的IDEA,安装了一个插件,然后执行了一下,规范不规范,看报告吧。这可怎么是好,这玩意竟然给我挑出来这么...

SpringBoot中6种拦截器使用场景

SpringBoot中6种拦截器使用场景,下面是思维导图详细总结一、拦截器基础...

用注解进行参数校验,spring validation介绍、使用、实现原理分析

springvalidation是什么在平时的需求开发中,经常会有参数校验的需求,比如一个接收用户注册请求的接口,要校验用户传入的用户名不能为空、用户名长度不超过20个字符、传入的手机号是合法的手机...

快速上手:SpringBoot自定义请求参数校验

作者:UncleChen来源:http://unclechen.github.io/最近在工作中遇到写一些API,这些API的请求参数非常多,嵌套也非常复杂,如果参数的校验代码全部都手动去实现,写起来...

分布式微服务架构组件

1、服务发现-Nacos服务发现、配置管理、服务治理及管理,同类产品还有ZooKeeper、Eureka、Consulhttps://nacos.io/zh-cn/docs/what-is-nacos...

优雅的参数校验,告别冗余if-else

一、参数校验简介...

Spring Boot断言深度指南:用断言机制为代码构筑健壮防线

在SpringBoot开发中,断言(Assert)如同代码的"体检医生",能在上线前精准捕捉业务逻辑漏洞。本文将结合企业级实践,解析如何通过断言机制实现代码自检、异常预警与性能优化三...

如何在项目中优雅的校验参数

本文看点前言验证数据是贯穿所有应用程序层(从表示层到持久层)的常见任务。通常在每一层实现相同的验证逻辑,这既费时又容易出错。为了避免重复这些验证,开发人员经常将验证逻辑直接捆绑到域模型中,将域类与验证...

SpingBoot项目使用@Validated和@Valid参数校验

一、什么是参数校验?我们在后端开发中,经常遇到的一个问题就是入参校验。简单来说就是对一个方法入参的参数进行校验,看是否符合我们的要求。比如入参要求是一个金额,你前端没做限制,用户随便过来一个负数,或者...

28个验证注解,通过业务案例让你精通Java数据校验(收藏篇)

在现代软件开发中,数据验证是确保应用程序健壮性和可靠性的关键环节。JavaBeanValidation(JSR380)作为一个功能强大的规范,为我们提供了一套全面的注解工具集,这些注解能够帮...

Springboot @NotBlank参数校验失效汇总

有时候明明一个微服务里的@Validated和@NotBlank用的好好的,但就是另一个里不能用,这时候问题是最不好排查的,下面列举了各种失效情况的汇总,供各位参考:1、版本问题springbo...

这可能是最全面的Spring面试八股文了

Spring是什么?Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。...

取消回复欢迎 发表评论: