机器学习-GAN生成对抗网络 生成对抗网络的原理
ztj100 2024-12-17 17:48 33 浏览 0 评论
1、什么是GAN?
GAN是2014年6月,Bengio团队提出来的,感兴趣的可以搜索论文:《Generative Adversarial Networks》
由生成器和判别器组成,即Generator和Discriminator,可以完成很多匪夷所思的生成问题。在图像生成、语音转换、文本生成领域均占有很重要地位。
Generator生成器:是一个深度神经网络,输入一个低维vector,输出高维vector(图片或文本或语音)
Discriminator判别器:也是一个深度神经网络,输入一个高维vector(图片或文本或语音),输出一个标量。标量越大,代表输入图片(或文本语音)越真实。
举个例子:(图片来自网络)
给定真实数据集 R,G 是生成器(generator),它的任务是生成能以假乱真的假数据;而 D 是判别器 (discriminator),它从真实数据集或者 G 那里获取数据, 然后做出判别真假的标记。
2、核心思想
判断器的任务是尽力将假的判断为假的,将真的判断为真的;生成器的任务是使生成的越真越好。两者交替迭代训练。
3、pytorch代码小试牛刀
代码主要参考:https://blog.csdn.net/qinglingLS/article/details/91480550
# -*- coding: utf-8 -*-
# @Time : 2021/12/15 18:39
# @Author :
# @Email :
# @File : GAN_test.py
# coding=utf-8
import torch.autograd
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms
from torchvision import datasets
from torchvision.utils import save_image
import os
# 创建文件夹
if not os.path.exists('./img'):
os.mkdir('./img')
# 有GPU优先使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def to_img(x):
out = 0.5 * (x + 1)
out = out.clamp(0, 1) # Clamp函数可以将随机变化的数值限制在一个给定的区间[min, max]内:
out = out.view(-1, 1, 28, 28) # view()函数作用是将一个多行的Tensor,拼接成一行
return out
batch_size = 128
num_epoch = 100
z_dimension = 100
# 图像预处理
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)) # (x-mean) / std(归一化)
])
# mnist dataset mnist数据集下载(已经下载之后,download=FALSE)
mnist = datasets.MNIST(
root='./data/', train=True, transform=img_transform, download=True
)
# data loader 数据载入
dataloader = torch.utils.data.DataLoader(
dataset=mnist, batch_size=batch_size, shuffle=True
)
# 定义判别器 #####Discriminator######使用多层网络来作为判别器
# 将图片28x28展开成784,然后通过多层感知器,中间经过斜率设置为0.2的LeakyReLU激活函数,
# 最后接sigmoid激活函数得到一个0到1之间的概率进行二分类。
class discriminator(nn.Module):
def __init__(self):
super(discriminator, self).__init__()
self.dis = nn.Sequential(
nn.Linear(784, 256), # 输入特征数为784,输出为256
nn.LeakyReLU(0.2), # 进行非线性映射
nn.Linear(256, 256), # 进行一个线性映射
nn.LeakyReLU(0.2),
nn.Linear(256, 1),
nn.Sigmoid() # 也是一个激活函数,二分类问题中,
# sigmoid可以班实数映射到【0,1】,作为概率值,
# 多分类用softmax函数
)
def forward(self, x):
x = self.dis(x)
return x
# ###### 定义生成器 Generator #####
# 输入一个100维的0~1之间的高斯分布,然后通过第一层线性变换将其映射到256维,
# 然后通过LeakyReLU激活函数,接着进行一个线性变换,再经过一个LeakyReLU激活函数,
# 然后经过线性变换将其变成784维,最后经过Tanh激活函数是希望生成的假的图片数据分布
# 能够在-1~1之间。
class generator(nn.Module):
def __init__(self):
super(generator, self).__init__()
self.gen = nn.Sequential(
nn.Linear(100, 256), # 用线性变换将输入映射到256维
nn.ReLU(True), # relu激活
nn.Linear(256, 256), # 线性变换
nn.ReLU(True), # relu激活
nn.Linear(256, 784), # 线性变换
nn.Tanh() # Tanh激活使得生成数据分布在【-1,1】之间,因为输入的真实数据的经过transforms之后也是这个分布
)
def forward(self, x):
x = self.gen(x)
return x
# 创建对象
D = discriminator()
G = generator()
if torch.cuda.is_available():
D = D.to(device)
G = G.to(device)
# 首先需要定义loss的度量方式 (二分类的交叉熵)
# 其次定义 优化函数,优化函数的学习率为0.0003
criterion = nn.BCELoss() # 是单目标二分类交叉熵函数
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.0003)
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.0003)
# ##########################进入训练##判别器的判断过程#####################
for epoch in range(num_epoch): # 进行多个epoch的训练
for i, (img, _) in enumerate(dataloader):
num_img = img.size(0)
# view()函数作用是将一个多行的Tensor,拼接成一行
# 第一个参数是要拼接的tensor,第二个参数是-1
# =============================训练判别器==================
img = img.view(num_img, -1) # 将图片展开为28*28=784
real_img = Variable(img).to(device) # 将tensor变成Variable放入计算图中
real_label = Variable(torch.ones(num_img)).squeeze(-1).to(device) # 定义真实的图片label为1,
fake_label = Variable(torch.zeros(num_img)).squeeze(-1).to(device) # 定义假的图片的label为0
# ########判别器训练train#####################
# 分为两部分:1、真的图像判别为真;2、假的图像判别为假
# 计算真实图片的损失
real_out = D(real_img).squeeze(-1) # 将真实图片放入判别器中,並降低一個維度
# print("real_out,real_label Size=",real_out.size(),',',real_label.size())
d_loss_real = criterion(real_out, real_label) # 得到真实图片的loss
real_scores = real_out # 得到真实图片的判别值,输出的值越接近1越好
# 计算假的图片的损失
z = Variable(torch.randn(num_img, z_dimension)).to(device) # 随机生成一些噪声
fake_img = G(z).detach() # 随机噪声放入生成网络中,生成一张假的图片。 # 避免梯度传到G,因为G不用更新, detach分离
fake_out = D(fake_img).squeeze(-1) # 判别器判断假的图片,
d_loss_fake = criterion(fake_out, fake_label) # 得到假的图片的loss
fake_scores = fake_out # 得到假图片的判别值,对于判别器来说,假图片的损失越接近0越好
# 损失函数和优化
d_loss = d_loss_real + d_loss_fake # 损失包括判真损失和判假损失
d_optimizer.zero_grad() # 在反向传播之前,先将梯度归0
d_loss.backward() # 将误差反向传播
d_optimizer.step() # 更新参数
# ==================训练生成器============================
# ###############################生成网络的训练###############################
# 原理:目的是希望生成的假的图片被判别器判断为真的图片,
# 在此过程中,将判别器固定,将假的图片传入判别器的结果与真实的label对应,
# 反向传播更新的参数是生成网络里面的参数,
# 这样可以通过更新生成网络里面的参数,来训练网络,使得生成的图片让判别器以为是真的
# 这样就达到了对抗的目的
# 计算假的图片的损失
z = Variable(torch.randn(num_img, z_dimension)).to(device) # 得到随机噪声
fake_img = G(z) # 随机噪声输入到生成器中,得到一副假的图片
output = D(fake_img).squeeze(-1) # 经过判别器得到的结果
g_loss = criterion(output, real_label) # 得到的假的图片与真实的图片的label的loss
# bp and optimize
g_optimizer.zero_grad() # 梯度归0
g_loss.backward() # 进行反向传播
g_optimizer.step() # .step()一般用在反向传播后面,用于更新生成网络的参数
# 打印中间的损失
if (i + 1) % 100 == 0:
print('Epoch[{}/{}],d_loss:{:.6f},g_loss:{:.6f} '
'D real: {:.6f},D fake: {:.6f}'.format(
epoch, num_epoch, d_loss.data.item(), g_loss.data.item(),
real_scores.data.mean(), fake_scores.data.mean() # 打印的是真实图片的损失均值
))
if epoch == 0:
real_images = to_img(real_img.cpu().data)
save_image(real_images, './img/real_images.png')
fake_images = to_img(fake_img.cpu().data)
save_image(fake_images, './img/fake_images-{}.png'.format(epoch + 1))
# 保存模型
torch.save(G.state_dict(), './generator.pth')
torch.save(D.state_dict(), './discriminator.pth')
运行结果:
相关推荐
- sharding-jdbc实现`分库分表`与`读写分离`
-
一、前言本文将基于以下环境整合...
- 三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么
-
在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...
- MySQL8行级锁_mysql如何加行级锁
-
MySQL8行级锁版本:8.0.34基本概念...
- mysql使用小技巧_mysql使用入门
-
1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...
- MySQL/MariaDB中如何支持全部的Unicode?
-
永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...
- 聊聊 MySQL Server 可执行注释,你懂了吗?
-
前言MySQLServer当前支持如下3种注释风格:...
- MySQL系列-源码编译安装(v5.7.34)
-
一、系统环境要求...
- MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了
-
对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...
- MySQL字符问题_mysql中字符串的位置
-
中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...
- 深圳尚学堂:mysql基本sql语句大全(三)
-
数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...
- MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?
-
大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...
- 一文讲清怎么利用Python Django实现Excel数据表的导入导出功能
-
摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...
- 用DataX实现两个MySQL实例间的数据同步
-
DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...
- MySQL数据库知识_mysql数据库基础知识
-
MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...
- 如何为MySQL中的JSON字段设置索引
-
背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
【VueTorrent】一款吊炸天的qBittorrent主题,人人都可用
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)