通俗易懂的学会:SQL窗口函数
ztj100 2024-12-13 17:24 14 浏览 0 评论
?一.窗口函数有什么用?
在日常工作中,经常会遇到需要在每组内排名,比如下面的业务需求:
排名问题:每个部门按业绩来排名
topN问题:找出每个部门排名前N的员工进行奖励
面对这类需求,就需要使用sql的高级功能窗口函数了。
二.什么是窗口函数?
窗口函数,也叫OLAP函数(Online Anallytical Processing,联机分析处理),可以对数据库数据进行实时分析处理。
窗口函数的基本语法如下:
<窗口函数> over (partition by <用于分组的列名> order by <用于排序的列名>)
那么语法中的<窗口函数>都有哪些呢?
<窗口函数>的位置,可以放以下两种函数:
1) 专用窗口函数,包括后面要讲到的rank, dense_rank, row_number等专用窗口函数。
2) 聚合函数,如sum. avg, count, max, min等
因为窗口函数是对where或者group by子句处理后的结果进行操作,所以窗口函数原则上只能写在select子句中。
三.如何使用?
接下来,就结合实例,给大家介绍几种窗口函数的用法。
1.专用窗口函数rank
例如下图,是班级表中的内容
如果我们想在每个班级内按成绩排名,得到下面的结果。
以班级“1”为例,这个班级的成绩“95”排在第1位,这个班级的“83”排在第4位。上面这个结果确实按我们的要求在每个班级内,按成绩排名了。
得到上面结果的sql语句代码如下:
select *, rank() over (partition by 班级 order by 成绩 desc) as rankingfrom 班级表
我们来解释下这个sql语句里的select子句。rank是排序的函数。要求是“每个班级内按成绩排名”,这句话可以分为两部分:
1)每个班级内:按班级分组
partition by用来对表分组。在这个例子中,所以我们指定了按“班级”分组(partition by 班级)
2)按成绩排名
order by子句的功能是对分组后的结果进行排序,默认是按照升序(asc)排列。在本例中(order by 成绩 desc)是按成绩这一列排序,加了desc关键词表示降序排列。
通过下图,我们就可以理解partiition by(分组)和order by(在组内排序)的作用了。
窗口函数具备了我们之前学过的group by子句分组的功能和order by子句排序的功能。那么,为什么还要用窗口函数呢?
这是因为,group by分组汇总后改变了表的行数,一行只有一个类别。而partiition by和rank函数不会减少原表中的行数。例如下面统计每个班级的人数。
相信通过这个例子,你已经明白了这个窗口函数的使用:
select *, rank() over (partition by 班级 order by 成绩 desc) as rankingfrom 班级表
现在我们说回来,为什么叫“窗口”函数呢?这是因为partition by分组后的结果称为“窗口”,这里的窗口不是我们家里的门窗,而是表示“范围”的意思。
简单来说,窗口函数有以下功能:
1)同时具有分组和排序的功能
2)不减少原表的行数
3)语法如下:
<窗口函数> over (partition by <用于分组的列名> order by <用于排序的列名>)
2.其他专业窗口函数
专用窗口函数rank, dense_rank, row_number有什么区别呢?
它们的区别我举个例子,你们一下就能看懂:
select *, rank() over (order by 成绩 desc) as ranking, dense_rank() over (order by 成绩 desc) as dese_rank, row_number() over (order by 成绩 desc) as row_numfrom 班级表
得到结果:
从上面的结果可以看出:
rank函数:这个例子中是5位,5位,5位,8位,也就是如果有并列名次的行,会占用下一名次的位置。比如正常排名是1,2,3,4,但是现在前3名是并列的名次,结果是:1,1,1,4。
dense_rank函数:这个例子中是5位,5位,5位,6位,也就是如果有并列名次的行,不占用下一名次的位置。比如正常排名是1,2,3,4,但是现在前3名是并列的名次,结果是:1,1,1,2。
row_number函数:这个例子中是5位,6位,7位,8位,也就是不考虑并列名次的情况。比如前3名是并列的名次,排名是正常的1,2,3,4。
这三个函数的区别如下:
最后,需要强调的一点是:在上述的这三个专用窗口函数中,函数后面的括号不需要任何参数,保持()空着就可以。
现在,大家对窗口函数有一个基本了解了吗?
3.聚合函数作为窗口函数
聚和窗口函数和上面提到的专用窗口函数用法完全相同,只需要把聚合函数写在窗口函数的位置即可,但是函数后面括号里面不能为空,需要指定聚合的列名。
我们来看一下窗口函数是聚合函数时,会出来什么结果:
select *, sum(成绩) over (order by 学号) as current_sum, avg(成绩) over (order by 学号) as current_avg, count(成绩) over (order by 学号) as current_count, max(成绩) over (order by 学号) as current_max, min(成绩) over (order by 学号) as current_minfrom 班级表
得到结果:
有发现什么吗?我单独用sum举个例子:
如上图,聚合函数sum在窗口函数中,是对自身记录、及位于自身记录以上的数据进行求和的结果。比如0004号,在使用sum窗口函数后的结果,是对0001,0002,0003,0004号的成绩求和,若是0005号,则结果是0001号~0005号成绩的求和,以此类推。
不仅是sum求和,平均、计数、最大最小值,也是同理,都是针对自身记录、以及自身记录之上的所有数据进行计算,现在再结合刚才得到的结果(下图),是不是理解起来容易多了?
比如0005号后面的聚合窗口函数结果是:学号0001~0005五人成绩的总和、平均、计数及最大最小值。
如果想要知道所有人成绩的总和、平均等聚合结果,看最后一行即可。
这样使用窗口函数有什么用呢?
聚合函数作为窗口函数,可以在每一行的数据里直观的看到,截止到本行数据,统计数据是多少(最大值、最小值等)。同时可以看出每一行数据,对整体统计数据的影响。
四.注意事项
partition子句可是省略,省略就是不指定分组,结果如下,只是按成绩由高到低进行了排序:
select *, rank() over (order by 成绩 desc) as rankingfrom 班级表
得到结果:
但是,这就失去了窗口函数的功能,所以一般不要这么使用。
四.总结
1.窗口函数语法
<窗口函数> over (partition by <用于分组的列名> order by <用于排序的列名>)
<窗口函数>的位置,可以放以下两种函数:
1) 专用窗口函数,比如rank, dense_rank, row_number等
2) 聚合函数,如sum. avg, count, max, min等
2.窗口函数有以下功能:
1)同时具有分组(partition by)和排序(order by)的功能
2)不减少原表的行数,所以经常用来在每组内排名
3.注意事项
窗口函数原则上只能写在select子句中
4.窗口函数使用场景
1)业务需求“在每组内排名”,比如:
排名问题:每个部门按业绩来排名
topN问题:找出每个部门排名前N的员工进行奖励
下一次会跟大家分享一些窗口函数的面试题,从而让各位在面试、工作中都能遇到这类问题,就想到哦,这用窗口函数就可以解决。
推荐:如何提升你的分析技能,实现升职加薪?
相关推荐
- 再说圆的面积-蒙特卡洛(蒙特卡洛方法求圆周率的matlab程序)
-
在微积分-圆的面积和周长(1)介绍微积分方法求解圆的面积,本文使用蒙特卡洛方法求解圆面积。...
- python创建分类器小结(pytorch分类数据集创建)
-
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。...
- matplotlib——绘制散点图(matplotlib散点图颜色和图例)
-
绘制散点图不同条件(维度)之间的内在关联关系观察数据的离散聚合程度...
- python实现实时绘制数据(python如何绘制)
-
方法一importmatplotlib.pyplotaspltimportnumpyasnpimporttimefrommathimport*plt.ion()#...
- 简单学Python——matplotlib库3——绘制散点图
-
前面我们学习了用matplotlib绘制折线图,今天我们学习绘制散点图。其实简单的散点图与折线图的语法基本相同,只是作图函数由plot()变成了scatter()。下面就绘制一个散点图:import...
- 数据分析-相关性分析可视化(相关性分析数据处理)
-
前面介绍了相关性分析的原理、流程和常用的皮尔逊相关系数和斯皮尔曼相关系数,具体可以参考...
- 免费Python机器学习课程一:线性回归算法
-
学习线性回归的概念并从头开始在python中开发完整的线性回归算法最基本的机器学习算法必须是具有单个变量的线性回归算法。如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要。但是...
- 用Python进行机器学习(2)之逻辑回归
-
前面介绍了线性回归,本次介绍的是逻辑回归。逻辑回归虽然名字里面带有“回归”两个字,但是它是一种分类算法,通常用于解决二分类问题,比如某个邮件是否是广告邮件,比如某个评价是否为正向的评价。逻辑回归也可以...
- 【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂
-
一、拟合和回归的区别拟合...
- 推荐2个十分好用的pandas数据探索分析神器
-
作者:俊欣来源:关于数据分析与可视化...
- 向量数据库:解锁大模型记忆的关键!选型指南+实战案例全解析
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- 用Python进行机器学习(11)-主成分分析PCA
-
我们在机器学习中有时候需要处理很多个参数,但是这些参数有时候彼此之间是有着各种关系的,这个时候我们就会想:是否可以找到一种方式来降低参数的个数呢?这就是今天我们要介绍的主成分分析,英文是Princip...
- 神经网络基础深度解析:从感知机到反向传播
-
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在...
- Python实现基于机器学习的RFM模型
-
CDA数据分析师出品作者:CDALevelⅠ持证人岗位:数据分析师行业:大数据...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)