基于深度学习Autoencoder的信用卡欺诈异常检测,效果非常牛逼
ztj100 2024-12-07 18:49 10 浏览 0 评论
作者:小伍哥
来源:小伍哥聊风控
大家好,我是小伍哥,今天接着搞异常检测。
深度学习用于异常检测,效果还是相当牛逼的。信用卡欺诈数据集,在孤立森林上能做到26%的top1000准确率,但是在Autoencoder算法上,最高做到了33.6%,但是这个数据很不稳定,有时候只有25%左右,但是至少这个模型潜力巨大,需要更多的试验,找到更稳定的网络结构。
自编码器(AutoEncoder, AE)是一类在半监督学习和非监督学习中使用的人工神经网络,其功能是通过将输入信息作为学习目标,对输入信息进行表征学习(representation learning),自编码器包含编码器(encoder)和解码器(decoder)两部分 。
AutoEncoder是深度学习的一个重要内容,并且非常有意思,神经网络通过大量数据集,进行end-to-end的训练,不断提高其准确率,而AutoEncoder通过设计encode和decode过程使输入和输出越来越接近,是一种无监督学习过程,可以被应用于降维(dimensionality reduction)和异常值检测(anomaly detection),包含卷积层构筑的自编码器可被应用于计算机视觉问题,包括图像降噪(image denoising) 、神经风格迁移(neural style transfer)等 ,本文主要讲解如何利用AutoEncoder进行异常检测试验。
用AutoEncoder进行降噪,可以看到通过卷积自编码器,我们的降噪效果还是非常好的,最终生成的图片看起来非常顺滑,噪声也几乎看不到了。
用AutoEncoder进行降维。
一、Autoencoder结构简介
Autoencoder本质上它使用了一个神经网络来产生一个高维输入的低维表,Autoencoder与主成分分析PCA类似,但是Autoencoder在使用非线性激活函数时克服了PCA线性的限制。
Autoencoder包含两个主要的部分,encoder(编码器)和 decoder(解码器)。Encoder的作用是用来发现给定数据的压缩表示,decoder是用来重建原始输入。在训练时,decoder 强迫 autoencoder 选择最有信息量的特征,最终保存在压缩表示中。最终压缩后的表示就在中间的coder层当中。
以下图为例,原始数据的维度是10,encoder和decoder分别有两层,中间的coder共有3个节点,也就是说原始数据被降到了只有3维。Decoder根据降维后的数据再重建原始数据,重新得到10维的输出。从Input到Ouptut的这个过程中,autoencoder实际上也起到了降噪的作用。
二、Autoencoder异常检测流程
异常检测(anomaly detection)通常分为有监督和无监督两种情形。在无监督的情况下,我们没有异常样本用来学习,而算法的基本上假设是异常点服从不同的分布。根据正常数据训练出来的Autoencoder,能够将正常样本重建还原,但是却无法将异于正常分布的数据点较好地还原,导致还原误差较大。
如果样本的特征都是数值变量,我们可以用MSE或者MAE作为还原误差。例如上图,如果输入样本为
经过Autoencoder重建的结果为
还原误差MSE为
还原误差MAE为
三、模型算法过程
数据还是使用信用卡的数据,数据来自于kaggle上的一个信用卡欺诈检测比赛,数据质量高,正负样本比例非常悬殊,很典型的异常检测数据集,在这个数据集上来测试一下各种异常检测手段的效果。当然,可能换个数据集结果就会有很大不同,结果仅供参考。
1、数据集介绍
信用卡欺诈是指故意使用伪造、作废的信用卡,冒用他人的信用卡骗取财物,或用本人信用卡进行恶意透支的行为,信用卡欺诈形式分为3种:失卡冒用、假冒申请、伪造信用卡。欺诈案件中,有60%以上是伪造信用卡诈骗,其特点是团伙性质,从盗取卡资料、制造假卡、贩卖假卡,到用假卡作案,牟取暴利。而信用卡欺诈检测是银行减少损失的重要手段。
该数据集包含欧洲持卡人于 2013 年 9 月通过信用卡进行的交易信息。此数据集显示的是两天内发生的交易,在 284807 笔交易中,存在 492 起欺诈,数据集高度不平衡,正类(欺诈)仅占所有交易的 0.172%。原数据集已做脱敏处理和PCA处理,匿名变量V1, V2, ...V28 是 PCA 获得的主成分,唯一未经过 PCA 处理的变量是 Time 和 Amount。Time 是每笔交易与数据集中第一笔交易之间的间隔,单位为秒;Amount 是交易金额。Class 是分类变量,在发生欺诈时为1,否则为0。项目要求根据现有数据集建立分类模型,对信用卡欺诈行为进行检测。
注:PCA - "Principal Component Analysis" - 主成分分析,用于提取数据集的"主成分"特征,即对数据集进行降维处理。
2、数据来源
数据集 Credit Card Fraud Detection 由比利时布鲁塞尔自由大学(ULB) - Worldline and the Machine Learning Group 提供。可从Kaggle上下载:https://www.kaggle.com/mlg-ulb/creditcardfraud
不想自己下载数据的,后台回复【信用卡欺诈】领取。
3、模型搭建
需要的包比较多,我们先加载下
# 加载所需要的包
import warnings
warnings.filterwarnings("ignore")
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#plt.style.use('seaborn')
import tensorflow as tf
import seaborn as sns
from sklearn.model_selection import train_test_split
from keras.models import Model, load_model
from keras.layers import Input, Dense,LeakyReLU,BatchNormalization
from keras.callbacks import ModelCheckpoint
from keras import regularizers
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import roc_curve, auc, precision_recall_curve
# 工作空间设置
os.chdir('/Users/wuzhengxiang/Documents/DataSets/CreditCardFraudDetection')
os.getcwd()
数据读取和简单的特征工程
# 读取数据
d = pd.read_csv('creditcard.csv')
# 查看样本比例
num_nonfraud = np.sum(d['Class'] == 0)
num_fraud = np.sum(d['Class'] == 1)
plt.bar(['Fraud', 'non-fraud'], [num_fraud, num_nonfraud], color='dodgerblue')
plt.show()
# 删除时间列,对Amount进行标准化
data = d.drop(['Time'], axis=1)
data['Amount'] = StandardScaler().fit_transform(data[['Amount']])
X = data.drop(['Class'],axis=1)
Y = data.Class
模型搭建+模型训练
# 设置Autoencoder的参数
input_dim = X.shape[1]
encoding_dim = 128
num_epoch = 30
batch_size = 256
input_layer = Input(shape=(input_dim, ))
encoder = Dense(encoding_dim,
activation="tanh",
activity_regularizer=regularizers.l1(10e-5)
)(input_layer)
encoder =BatchNormalization()(encoder)
encoder=LeakyReLU(alpha=0.2)(encoder)
encoder = Dense(int(encoding_dim/2),
activation="relu"
)(encoder)
encoder =BatchNormalization()(encoder)
encoder=LeakyReLU(alpha=0.1)(encoder)
encoder = Dense(int(encoding_dim/4),
activation="relu"
)(encoder)
encoder =BatchNormalization()(encoder)
### decoder
decoder = LeakyReLU(alpha=0.1)(encoder)
decoder = Dense(int(encoding_dim/4),
activation='tanh'
)(decoder)
decoder = BatchNormalization()(decoder)
decoder = LeakyReLU(alpha=0.1)(decoder)
decoder = Dense(int(encoding_dim/2),
activation='tanh'
)(decoder)
decoder = BatchNormalization()(decoder)
decoder = LeakyReLU(alpha=0.1)(decoder)
decoder = Dense(input_dim,
#activation='relu'
)(decoder)
autoencoder = Model(inputs = input_layer,
outputs = decoder
)
autoencoder.compile(optimizer='adam',
loss='mean_squared_error',
metrics=['mae','mse']
)
# 模型保存为 XiaoWuGe_model.h5,并开始训练模型
checkpointer = ModelCheckpoint(filepath="XiaoWuGe_model.h5",
verbose=0,
save_best_only=True
)
history = autoencoder.fit(X,
X,
epochs=num_epoch,
batch_size=batch_size,
shuffle=True,
#validation_data=(X_test, X_test),
verbose=1,
callbacks=[checkpointer]
).history
Epoch 1/30
284807/284807 [==============================] - 39s 136us/step - loss: 0.6593 - mae: 0.3893 - mse: 0.4098
Epoch 2/30
Epoch 29/30
284807/284807 [==============================] - 41s 144us/step - loss: 0.1048 - mae: 0.1188 - mse: 0.0558
Epoch 30/30
284807/284807 [==============================] - 39s 135us/step - loss: 0.0891 - mae: 0.1134 - mse: 0.0495
模型结果可视化
# 画出损失函数曲线
plt.figure(figsize=(14, 5))
plt.subplot(121)
plt.plot(history['loss'], c='dodgerblue', lw=3)
plt.title('model loss')
plt.ylabel('mse')
plt.xlabel('epoch')
plt.legend(['train'], loc='upper right')
# 画出损失函数曲线
plt.figure(figsize=(14, 5))
plt.subplot(121)
plt.plot(history['mae'], c='dodgerblue', lw=3)
plt.title('model mae')
plt.ylabel('mae')
plt.xlabel('epoch')
plt.legend(['train'], loc='upper right')
# 画出损失函数曲线
plt.figure(figsize=(14, 5))
plt.subplot(121)
plt.plot(history['mse'], c='dodgerblue', lw=3)
plt.title('model mse')
plt.ylabel('mse')
plt.xlabel('epoch')
plt.legend(['train'], loc='upper right')
模型结果预测
#利用训练好的autoencoder重建测试集
pred_X = autoencoder.predict(X)
# 计算还原误差MSE和MAE
mse_X = np.mean(np.power(X-pred_X,2), axis=1)
mae_X = np.mean(np.abs(X-pred_X), axis=1)
data['mse_X'] = mse_X
data['mae_X'] = mae_X
# TopN准确率评估
n = 1000
df = data.sort_values(by='mae_X',ascending=False)
df = df.head(n)
rate = df[df['Class']==1].shape[0]/n
print('Top{}的准确率为:{}'.format(n,rate))
Top1000的准确率为:0.336
可以看到,我们的准确率为0.336,比之前的孤立森林又有了很大的提高,但是我经过了比较多的试验,这是比较理想的结果。后期我会找个更加稳定的结构分享给大家,下面我可以可以看看,正样本和负样本的一个分布差异。
# 提取负样本,并且按照7:3切成训练集和测试集
mask = (data['Class'] == 0)
X_train, X_test = train_test_split(X, test_size=0.3,
random_state=520)
# 提取所有正样本,作为测试集的一部分
X_fraud = X[~mask]
# 利用训练好的autoencoder重建测试集
pred_test = autoencoder.predict(X_test)
pred_fraud = autoencoder.predict(X_fraud)
# 计算还原误差MSE和MAE
mse_test = np.mean(np.power(X_test - pred_test, 2), axis=1)
mse_fraud = np.mean(np.power(X_fraud - pred_fraud, 2), axis=1)
mae_test = np.mean(np.abs(X_test - pred_test), axis=1)
mae_fraud = np.mean(np.abs(X_fraud - pred_fraud), axis=1)
mse_df = pd.DataFrame()
mse_df['Class'] = [0] * len(mse_test) + [1] * len(mse_fraud)
mse_df['MSE'] = np.hstack([mse_test, mse_fraud])
mse_df['MAE'] = np.hstack([mae_test, mae_fraud])
mse_df = mse_df.sample(frac=1).reset_index(drop=True)
# 分别画出测试集中正样本和负样本的还原误差MAE和MSE
markers = ['o', '^']
markers = ['o', '^']
colors = ['dodgerblue', 'red']
labels = ['Non-fraud', 'Fraud']
plt.figure(figsize=(14, 5))
plt.subplot(121)
for flag in [1, 0]:
temp = mse_df[mse_df['Class'] == flag]
plt.scatter(temp.index,
temp['MAE'],
alpha=0.7,
marker=markers[flag],
c=colors[flag],
label=labels[flag])
plt.title('Reconstruction MAE')
plt.ylabel('Reconstruction MAE')
plt.xlabel('Index')
plt.subplot(122)
for flag in [1, 0]:
temp = mse_df[mse_df['Class'] == flag]
plt.scatter(temp.index,
temp['MSE'],
alpha=0.7,
marker=markers[flag],
c=colors[flag],
label=labels[flag])
plt.legend(loc=[1, 0], fontsize=12)
plt.title('Reconstruction MSE')
plt.ylabel('Reconstruction MSE')
plt.xlabel('Index')
plt.show()
可以看到,正负样本的MAE和MSE有比较明显的差异,证明这个算法有很好的异常检测能力,当然,有部分正常样本还是很难通过异常检测分开。
相关推荐
- 干货 | 各大船公司VGM提交流程(msc船运公司提单查询)
-
VGM(VerifiedGrossMass)要来了,大外总管一本正经来给大家分享下各大船公司提交VGM流程。1,赫伯罗特(简称HPL)首先要注册账户第一,登录进入—选择product------...
- 如何修改图片详细信息?分享三个简单方法
-
如何修改图片详细信息?分享三个简单方法我们知道图片的详细信息里面包含了很多属性,有图片的创建时间,修改时间,地理位置,拍摄时间,还有图片的描述等信息。有时候为了一些特殊场景的需要我们需要对这些信息进行...
- 实用方法分享:没有图像处理软件,怎么将一张照片做成九宫格?
-
在发朋友圈时,如果把自己的照片做成九宫格,是不是更显得高大上?可能你问,是不是要借助图片处理软件,在这里,我肯定告诉你,不需要!!!你可能要问,那怎么实现呢?下面你看我是怎么做的,一句代码都不写,只是...
- 扫描档PDF也能变身“最强大脑”?RAG技术解锁尘封的知识宝藏!
-
尊敬的诸位!我是一名物联网工程师。关注我,持续分享最新物联网与AI资讯和开发实战。期望与您携手探寻物联网与AI的无尽可能。今天有网友问我扫描档的PDF文件能否做知识库,其实和普通pdf处理起来差异...
- 这两个Python库,轻而易举就能实现MP4与GIF格式互转,太好用了
-
mp4转gif的原理其实很简单,就是将mp4文件的帧读出来,然后合并成一张gif图。用cv2和PIL这两个库就可以轻松搞定。importglobimportcv2fromPILimpo...
- python图片处理之图片切割(python把图片切割成固定大小的子图)
-
python图片切割在很多项目中都会用到,比如验证码的识别、目标检测、定点切割等,本文给大家带来python的两种切割方式:fromPILimportImage"""...
- python+selenium+pytesseract识别图片验证码
-
一、selenium截取验证码#私信小编01即可获取大量Python学习资源#私信小编01即可获取大量Python学习资源#私信小编01即可获取大量Python学习资源importjso...
- 如何使用python裁剪图片?(python图片截取)
-
如何使用python裁剪图片如上图所示,这是一张包含了各类象棋棋子的图片。我们需要将其中每一个棋子都裁剪出来,此时可以利用python的...
- Python rembg 库去除图片背景(python 删除图片)
-
rembg是一个强大的Python库,用于自动去除图片背景。它基于深度学习模型(如U^2-Net),能够高效地将前景物体从背景中分离,生成透明背景的PNG图像。本教程将带你从安装到实际应用...
- 「python脚本」批量修改图片尺寸&视频安帧提取
-
【python脚本】批量修改图片尺寸#-*-coding:utf-8-*-"""CreatedonThuAug2316:06:352018@autho...
- 有趣的EXCEL&vba作图(vba画图表)
-
还记不记得之前有个日本老爷爷用EXCEL绘图,美轮美奂,可谓是心思巧妙。我是没有那样的艺术细胞,不过咱有自己的方式,用代码作图通过vba代码将指定的图片写入excel工作表中,可不是插入图片哦解题思...
- 怎么做到的?用python制作九宫格图片,太棒了
-
1.应用场景当初的想法是:想把一张图切割成九等份,发布到微信朋友圈,切割出来的图片,上传到朋友圈,发现微信不按照我排列的序号来排版。这样的结果是很耗时间的。让我深思,能不能有一种,直接拼接成一张...
- Python-连续图片合成视频(python多张图叠加为一张)
-
前言很多时候,我们需要将图片直接转成视频。下面介绍用python中的OpenCV将进行多张图合成视频。cv2安装不要直接用pipinstallcv2,这会报错。有很多人建议用打开window自带的...
- 如何把多个文件夹里的图片提取出来?文件夹整理合并工具
-
在项目管理中,团队成员可能会将项目相关的图片资料分散存储在不同的文件夹中,以便于分类和阶段性管理。然而,当项目进入汇报或总结阶段时,需要将所有相关图片整合到一个位置,以便于制作演示文稿、报告或进行项目...
- 超简单!为图片和 PDF 上去掉水印(pdf图片和水印是一体,怎么去除)
-
作者:某某白米饭...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 干货 | 各大船公司VGM提交流程(msc船运公司提单查询)
- 如何修改图片详细信息?分享三个简单方法
- 实用方法分享:没有图像处理软件,怎么将一张照片做成九宫格?
- 扫描档PDF也能变身“最强大脑”?RAG技术解锁尘封的知识宝藏!
- 这两个Python库,轻而易举就能实现MP4与GIF格式互转,太好用了
- python图片处理之图片切割(python把图片切割成固定大小的子图)
- python+selenium+pytesseract识别图片验证码
- 如何使用python裁剪图片?(python图片截取)
- Python rembg 库去除图片背景(python 删除图片)
- 「python脚本」批量修改图片尺寸&视频安帧提取
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)