用python做一个漂亮女生词云舞蹈视频
ztj100 2024-11-27 23:33 18 浏览 0 评论
文 | ssw
来源:Python 技术
上回我们活捉一只叫“轩逸”的动力蜘蛛,因为它动力拉垮,实在太慢了
这次让它变身给大家跳个舞,看下边的舞蹈,最拉跨的“动力”,这两个字给力吧!
词云来自轩逸车友圈的真实数据,爬取过程可以参考用python来吐槽,真是太会玩啦
gif不够清晰流畅,所以我们来看看更清晰的视频吧:
前言
利用you-get下载一个B站上跳舞的小姐姐视频,利用懂车帝爬取的“轩逸最不满意”来制作一个漂亮小姐姐词云跳舞视频,一起来看看吧。
1.下载视频
安装 you-get 库
pip install you-get -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
利用 you-get 下载 B 站视频到本地
you-get https://www.bilibili.com/video/BV1rD4y1Q7jc?from=search&seid=10634574434789745619
2.词云文本
脚本要用到的2个文件:
轩逸最不满意.txt
stopwords.txt
已上传 http://ssw.fit/file/
3.从视频中提取图片
import cv2
# ============================ 视频处理 分割成一帧帧图片 =======================================
cap = cv2.VideoCapture(r"不要心动??我要开始表白了【欣小萌】 (P1. 横屏版).mp4")
num = 1
while True:
# 逐帧读取视频 按顺序保存到本地文件夹
ret, frame = cap.read()
if ret:
if 88 <= num < 888:
cv2.imwrite(f"./pictures/img_{num}.jpg", frame) # 保存一帧帧的图片
print(f'========== 已成功保存第{num}张图片 ==========')
num += 1
else:
break
cap.release() # 释放资源
结果如下:
4.利用百度AI进行人像分割
准备工作
百度智能云网址
https://console.bce.baidu.com/
Python SDK参考文档
安装人体分析 Python SDK
pip install baidu-aip
1.领取免费资源
登录进去后,搜索“人体分析”
进入“人体分析”的页面后,领取免费资源
没领取的话,后面脚本的“人像分割”部分会报错,因为使用百度api需要用到这些资源。默认1万次,我已经用了1000多次
2.创建应用
创建一个人像分割的应用,记住你的AppID、API Key、Secret Key,后面会用到。
查看人像分割的 Python SDK 文档,熟悉它的基本使用。
# -*- coding: UTF-8 -*-
import cv2
import base64
import numpy as np
import os
from aip import AipBodyAnalysis
import time
import random
# 利用百度AI的人像分割服务 转化为二值图 有小姐姐身影的蒙版
# 百度云中已创建应用的 APP_ID API_KEY SECRET_KEY
APP_ID = '……'
API_KEY = '……'
SECRET_KEY = '……'
client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
# 保存图像分割后的路径
path = './mask_img/'
# os.listdir 列出保存到图片名称
img_files = os.listdir('./pictures')
print(img_files)
for num in range(88, len(img_files) + 1):
# 按顺序构造出图片路径
img = f'./pictures/img_{num}.jpg'
img1 = cv2.imread(img)
height, width, _ = img1.shape
# print(height, width)
# 二进制方式读取图片
with open(img, 'rb') as fp:
img_info = fp.read()
# 设置只返回前景 也就是分割出来的人像
seg_res = client.bodySeg(img_info)
print(111,seg_res)
labelmap = base64.b64decode(seg_res['labelmap'])
nparr = np.frombuffer(labelmap, np.uint8)
labelimg = cv2.imdecode(nparr, 1)
labelimg = cv2.resize(labelimg, (width, height), interpolation=cv2.INTER_NEAREST)
new_img = np.where(labelimg == 1, 255, labelimg)
mask_name = path + 'mask_{}.png'.format(num)
# 保存分割出来的人像
cv2.imwrite(mask_name, new_img)
print(f'======== 第{num}张图像分割完成 ========')
time.sleep(random.randint(1,2))
结果如下:
5.小姐姐跳舞词云生成
# -*- coding: UTF-8 -*-
from wordcloud import WordCloud
import collections
import jieba
import re
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
# 读取数据
with open('轩逸最不满意.txt',encoding='utf8') as f:
data = f.read()
# 文本预处理 去除一些无用的字符 只提取出中文出来
new_data = re.findall('[\u4e00-\u9fa5]+', data, re.S)
new_data = "/".join(new_data)
# 文本分词
seg_list_exact = jieba.cut(new_data, cut_all=True)
result_list = []
with open('stopwords.txt', encoding='utf-8') as f:
con = f.read().split('\n')
stop_words = set()
for i in con:
stop_words.add(i)
for word in seg_list_exact:
# 设置停用词并去除单个词
if word not in stop_words and len(word) > 1:
result_list.append(word)
# 筛选后统计词频
word_counts = collections.Counter(result_list)
path = './wordcloud/'
for num in range(88, 888):
img = f'./mask_img/mask_{num}.png'
# 获取蒙版图片
mask_ = 255 - np.array(Image.open(img))
# 绘制词云
plt.figure(figsize=(8, 5), dpi=200)
my_cloud = WordCloud(
background_color='black', # 设置背景颜色 默认是black
mask=mask_, # 自定义蒙版
mode='RGBA',
max_words=500,
font_path='C:/Windows/Fonts/simhei.TTF', # 设置字体 显示中文
).generate_from_frequencies(word_counts)
# 显示生成的词云图片
plt.imshow(my_cloud)
# 显示设置词云图中无坐标轴
plt.axis('off')
word_cloud_name = path + 'wordcloud_{}.png'.format(num)
my_cloud.to_file(word_cloud_name) # 保存词云图片
plt.close()
print(f'======== 第{num}张词云图生成 ========')
结果如下:
6.合成跳舞视频# -*- coding: UTF-8 -*-
import cv2
import os
# 输出视频的保存路径
video_dir = '轩逸最不满意.mp4'
# 帧率
fps = 30
# 图片尺寸
img_size = (1920, 1080)
fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', 'V') # opencv3.0 mp4会有警告但可以播放
videoWriter = cv2.VideoWriter(video_dir, fourcc, fps, img_size)
img_files = os.listdir('./wordcloud')
for i in range(88, 801):
img_path = './wordcloud/' + 'wordcloud_{}.png'.format(i)
frame = cv2.imread(img_path)
frame = cv2.resize(frame, img_size) # 生成视频 图片尺寸和设定尺寸相同
videoWriter.write(frame) # 写进视频里
print(f'======== 按照视频顺序第{i}张图片合进视频 ========')
videoWriter.release() # 释放资源
相关推荐
- 人生苦短,我要在VSCode里面用Python
-
轻沉发自浅度寺量子位出品|公众号QbitAI在程序员圈子里,VisualStudioCode(以下简称VSCode)可以说是目前最火的代码编辑器之一了。它是微软出品的一款可扩展的轻量...
- 亲测可用:Pycharm2019.3专业版永久激活教程
-
概述随着2020年的到来,又有一批Pycharm的激活码到期了,各位同仁估计也是在到处搜索激活方案,在这里,笔者为大家收录了一个永久激活的方案,亲测可用,欢迎下载尝试:免责声明本项目只做个人学习研究之...
- Python新手入门很简单(python教程入门)
-
我之前学习python走过很多的歧途,自学永远都是瞎猫碰死耗子一样,毫无头绪。后来心里一直都有一个做头条知识分享的梦,希望自己能够帮助曾经类似自己的人,于是我来了,每天更新5篇Python文章,喜欢的...
- Pycharm的设置和基本使用(pycharm运行设置)
-
这篇文章,主要是针对刚开始学习python语言,不怎么会使用pycharm的童鞋们;我来带领大家详细了解下pycharm页面及常用的一些功能,让大家能通过此篇文章能快速的开始编写python代码。一...
- 依旧是25年最拔尖的PyTorch实用教程!堪比付费级内容!
-
我真的想知道作者到底咋把PyTorch教程整得这么牛的啊?明明在内容上已经足以成为付费教材了,但作者偏要免费开源给大家学习!...
- 手把手教你 在Pytorch框架上部署和测试关键点人脸检测项目DBFace
-
这期教向大家介绍仅仅1.3M的轻量级高精度的关键点人脸检测模型DBFace,并手把手教你如何在自己的电脑端进行部署和测试运行,运行时bug解决。01.前言前段时间DBFace人脸检测库横空出世,...
- 进入Python的世界02外篇-Pycharm配置Pyqt6
-
为什么这样配置,要开发带UI的python也只能这样了,安装过程如下:一安装工具打开终端:pipinstallPyQt6PyQt6-tools二打开设置并汉化点击plugin,安装汉化插件,...
- vs code如何配置使用Anaconda(vscode调用anaconda库)
-
上一篇文章中(Anaconda使用完全指南),我们能介绍了Anaconda的安装和使用,以及如何在pycharm中配置Anaconda。本篇,将继续介绍在vscode中配置conda...
- pycharm中conda解释器无法配置(pycharm配置anaconda解释器)
-
之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...
- Volta:跨平台开发者的福音,统一前端js工具链从未如此简单!
-
我们都知道现在已经进入了Rust时代,不仅很多终端常用的工具都被rust重写了,而且现在很多前端工具也开始被Rust接手了,这不,现在就出现了一款JS工具管理工具,有了它,你可以管理多版本的js工具,...
- 开发者的福音,ElectronEgg: 新一代桌面应用开发框架
-
今天给大家介绍一个开源项目electron-egg。如果你是一个JS的前端开发人员,以前面对这项任务桌面应用开发在时,可能会感到无从下手,甚至觉得这是一项困难的挑战。ElectronEgg的出现,它能...
- 超强经得起考验的低代码开发平台Frappe
-
#挑战30天在头条写日记#开始进行管理软件的开发来讲,如果从头做起不是不可以,但选择一款免费的且经得起时间考验的低代码开发平台是非常有必要的,将大幅提升代码的质量、加快开发的效率、以及提高程序的扩展性...
- 一文带你搞懂Vue3 底层源码(vue3核心源码解析)
-
作者:妹红大大转发链接:https://mp.weixin.qq.com/s/D_PRIMAD6i225Pn-a_lzPA前言vue3出来有一段时间了。今天正式开始记录一下梗vue3.0.0-be...
- 基于小程序 DSL(微信、支付宝)的,可扩展的多端研发框架
-
Mor(发音为/mr/,类似more),是饿了么开发的一款基于小程序DSL的,可扩展的多端研发框架,使用小程序原生DSL构建,使用者只需书写一套(微信或支付宝)小程序,就可以通过Mor...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- 人生苦短,我要在VSCode里面用Python
- 亲测可用:Pycharm2019.3专业版永久激活教程
- Python新手入门很简单(python教程入门)
- Pycharm的设置和基本使用(pycharm运行设置)
- 依旧是25年最拔尖的PyTorch实用教程!堪比付费级内容!
- 手把手教你 在Pytorch框架上部署和测试关键点人脸检测项目DBFace
- 进入Python的世界02外篇-Pycharm配置Pyqt6
- vs code如何配置使用Anaconda(vscode调用anaconda库)
- pycharm中conda解释器无法配置(pycharm配置anaconda解释器)
- Volta:跨平台开发者的福音,统一前端js工具链从未如此简单!
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)