OpenCV-Python 图像金字塔 | 二十
ztj100 2024-11-21 00:30 36 浏览 0 评论
目标
在本章中,
- 我们将学习图像金字塔
- 我们将使用图像金字塔创建一个新的水果“Orapple”
- 我们将看到以下功能:cv.pyrUp(),cv.pyrDown()
理论
通常,我们过去使用的是恒定大小的图像。但是在某些情况下,我们需要使用不同分辨率的(相同)图像。例如,当在图像中搜索某些东西(例如人脸)时,我们不确定对象将以多大的尺寸显示在图像中。在这种情况下,我们将需要创建一组具有不同分辨率的相同图像,并在所有图像中搜索对象。这些具有不同分辨率的图像集称为“图像金字塔”(因为当它们堆叠在底部时,最高分辨率的图像位于顶部,最低分辨率的图像位于顶部时,看起来像金字塔)。
有两种图像金字塔:1)高斯金字塔和2)拉普拉斯金字塔
高斯金字塔中的较高级别(低分辨率)是通过删除较低级别(较高分辨率)图像中的连续行和列而形成的。然后,较高级别的每个像素由基础级别的5个像素的贡献与高斯权重形成。通过这样做,$M×N$图像变成M/2 × N/2图像。因此面积减少到原始面积的四分之一。它称为Octave。当我们在金字塔中越靠上时(即分辨率下降),这种模式就会继续。同样,在扩展时,每个级别的面积变为4倍。我们可以使用cv.pyrDown()和cv.pyrUp()函数找到高斯金字塔。
img = cv.imread('messi5.jpg')
lower_reso = cv.pyrDown(higher_reso)
以下是图像金字塔中的4个级别。
现在,您可以使用cv.pyrUp()函数查看图像金字塔。
higher_reso2 = cv.pyrUp(lower_reso)
记住,higherreso2不等于higherreso,因为一旦降低了分辨率,就会丢失信息。下面的图像是3层的金字塔从最小的图像在前面的情况下创建。与原图对比:
拉普拉斯金字塔由高斯金字塔形成。没有专用功能。拉普拉斯金字塔图像仅像边缘图像。它的大多数元素为零。它们用于图像压缩。拉普拉斯金字塔的层由高斯金字塔的层与高斯金字塔的高层的扩展版本之间的差形成。拉普拉斯等级的三个等级如下所示(调整对比度以增强内容):
使用金字塔进行图像融合
金字塔的一种应用是图像融合。例如,在图像拼接中,您需要将两个图像堆叠在一起,但是由于图像之间的不连续性,可能看起来不太好。在这种情况下,使用金字塔混合图像可以无缝混合,而不会在图像中保留大量数据。一个经典的例子是将两种水果,橙和苹果混合在一起。现在查看结果本身,以了解我在说什么:
请检查其他资源中的第一个参考,它具有图像混合,拉普拉斯金字塔等的完整图解详细信息。只需完成以下步骤即可:
- 加载苹果和橙子的两个图像
- 查找苹果和橙子的高斯金字塔(在此示例中, 级别数为6)
- 在高斯金字塔中,找到其拉普拉斯金字塔
- 然后在每个拉普拉斯金字塔级别中加入苹果的左半部分和橙子的右半部分
- 最后从此联合图像金字塔中重建原始图像。
下面是完整的代码。(为简单起见,每个步骤都是单独进行的,这可能会占用更多的内存。如果需要,可以对其进行优化)。
import cv2 as cv
import numpy as np,sys
A = cv.imread('apple.jpg')
B = cv.imread('orange.jpg')
# 生成A的高斯金字塔
G = A.copy()
gpA = [G]
for i in xrange(6):
G = cv.pyrDown(G)
gpA.append(G)
# 生成B的高斯金字塔
G = B.copy()
gpB = [G]
for i in xrange(6):
G = cv.pyrDown(G)
gpB.append(G)
# 生成A的拉普拉斯金字塔
lpA = [gpA[5]]
for i in xrange(5,0,-1):
GE = cv.pyrUp(gpA[i])
L = cv.subtract(gpA[i-1],GE)
lpA.append(L)
# 生成B的拉普拉斯金字塔
lpB = [gpB[5]]
for i in xrange(5,0,-1):
GE = cv.pyrUp(gpB[i])
L = cv.subtract(gpB[i-1],GE)
lpB.append(L)
# 现在在每个级别中添加左右两半图像
LS = []
for la,lb in zip(lpA,lpB):
rows,cols,dpt = la.shape
ls = np.hstack((la[:,0:cols/2], lb[:,cols/2:]))
LS.append(ls)
# 现在重建
ls_ = LS[0]
for i in xrange(1,6):
ls_ = cv.pyrUp(ls_)
ls_ = cv.add(ls_, LS[i])
# 图像与直接连接的每一半
real = np.hstack((A[:,:cols/2],B[:,cols/2:]))
cv.imwrite('Pyramid_blending2.jpg',ls_)
cv.imwrite('Direct_blending.jpg',real)
##
附加资源
- Image Blending:http://pages.cs.wisc.edu/~csverma/CS766_09/ImageMosaic/imagemosaic.html
相关推荐
- sharding-jdbc实现`分库分表`与`读写分离`
-
一、前言本文将基于以下环境整合...
- 三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么
-
在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...
- MySQL8行级锁_mysql如何加行级锁
-
MySQL8行级锁版本:8.0.34基本概念...
- mysql使用小技巧_mysql使用入门
-
1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...
- MySQL/MariaDB中如何支持全部的Unicode?
-
永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...
- 聊聊 MySQL Server 可执行注释,你懂了吗?
-
前言MySQLServer当前支持如下3种注释风格:...
- MySQL系列-源码编译安装(v5.7.34)
-
一、系统环境要求...
- MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了
-
对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...
- MySQL字符问题_mysql中字符串的位置
-
中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...
- 深圳尚学堂:mysql基本sql语句大全(三)
-
数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...
- MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?
-
大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...
- 一文讲清怎么利用Python Django实现Excel数据表的导入导出功能
-
摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...
- 用DataX实现两个MySQL实例间的数据同步
-
DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...
- MySQL数据库知识_mysql数据库基础知识
-
MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...
- 如何为MySQL中的JSON字段设置索引
-
背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...
你 发表评论:
欢迎- 一周热门
-
-
MySQL中这14个小玩意,让人眼前一亮!
-
旗舰机新标杆 OPPO Find X2系列正式发布 售价5499元起
-
【VueTorrent】一款吊炸天的qBittorrent主题,人人都可用
-
面试官:使用int类型做加减操作,是线程安全吗
-
C++编程知识:ToString()字符串转换你用正确了吗?
-
【Spring Boot】WebSocket 的 6 种集成方式
-
PyTorch 深度学习实战(26):多目标强化学习Multi-Objective RL
-
pytorch中的 scatter_()函数使用和详解
-
与 Java 17 相比,Java 21 究竟有多快?
-
基于TensorRT_LLM的大模型推理加速与OpenAI兼容服务优化
-
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)
- vmware17pro最新密钥 (34)
- mysql单表最大数据量 (35)