百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

模型训练前,一定要对数据处理熟悉!

ztj100 2024-11-21 00:29 23 浏览 0 评论

在开始模型训练前,一定要对数据处理熟悉!

一、预处理:

1、IEMOCAP语音数据部份

根据人(1F,1M,2F,2M,3F,3M,4F,4M,5F,5M):

ang有语音数目:[147,82,67,70,92,148,205,122,78,92]

exc有语音数目:[63,80,96,114,48,103,154,84,82,217]

hap有语音数目:[69,66,70,47,80,55,31,34,77,66]

neu有语音数目:[171,213,135,227,130,190,76,182,221,163]

sad有语音数目:[78,116,113,84,172,133,62,81,132,113]

混和:

ang有语音数目:1103exc有语音数目:1041hap有语音数目:595

neu有语音数目:1708sad有语音数目:1084总共5531条

若果是4490条的话,就是除去了exc的1041条。

在可以看见这个5分类各自的语音数目并不是很均衡。一大多数SER论文是做四分类即,'ang','hap','neu','sad',把'hap'与'exc'语音合并。那我也做4分类的SER,以便后期与其他论文的模型性能的比较。

2、数据界定

大多数论文笔用5折交叉验证或则10折交叉验证。

K折交叉验证:把数据平均分成k等份,每次实验拿一份做测试,其余用做训练。实验k次求平均值。如5折交叉验证就是把数据平均分成5等份,每次实验拿一份做测试,其余用做训练。实验5次求平均值。

在IEMOCAP上的SER论文实验有speakerindependent与speakerdependent之分:

(1)speakerdependent(SD):若采用5折交叉验证法,将语音情感数据库中的所有数据随机搅乱,之后平均成5份,逐一选定1份作为测试数据,其他4份做训练数据,最后将得到的确切率求和取平均。这么重复5次5折交叉验证,之后再求和取平均。

(2)speakerindependent(SI):将IEMOCAP中逐一选定不同的说话人做测试数据,其他说话人做训练数据,最后将每位人的语音情感辨识确切率求和取平均;若采用5倍交叉验证,按照说话人的数目以80%:20%的比列分割数据,80%的数据用于模型训练,剩余的数据用于模型测试。具体就是:IEMOCAP有10个人,1/2/3/4/5/6/7/8-thperson做训练集(80%),9/10-th做测试集(20%);1/2/3/4/5/6/9/10-thperson做训练集(80%),7/8-th做测试集(20%);1/2/3/4/7/8/9/10-thperson做训练集(80%),5/6-th做测试集(20%);1/2/5/6/7/8/9/10-thperson做训练集(80%),3/4-th做测试集(20%);3/4/5/6/7/8/9/10-thperson做训练集(80%),1/2-th做测试集(20%)。这与根据session做5折交叉验证类似了。

IEMOCAP有5个session:1/2/3/4/5,比较非常,一个session里有两个人,所以假如依照session做5折交叉验证的话就相当于speakerindependent了。

按session的5折交叉验证:

fold1:2/3/4/5-thsession组成训练集,1-thsession为测试集;

fold2:1/3/4/5-thsession组成训练集,2-thsession为测试集;

fold3:1/2/4/5-thsession组成训练集,3-thsession为测试集;

fold4:1/2/3/5-thsession组成训练集,4-thsession为测试集;

fold5:1/2/3/4-thsession组成训练集,5-thsession为测试集;

本次实验策略采用SI,说话人独立的策略。

3、特征提取

常用的特点:语谱图、MFCC等。语谱图(语音频谱图):有线性频谱图、梅尔频谱图、log-Mel频谱图。

此次我就提取梅尔频谱图:

(1)首先把IEMOCAP的语音统一到相同宽度,这儿我统一到2秒,即把一条语音切分成2秒一段,重叠1.6秒;不足2秒的语音用0补充。

def cut_wav(wav, seg_length, overlap, rate):
    """波形数据切割"""
    seg_len_points = seg_length * rate  # 一个segment所包含的采样点数
    seg_overlap_points = overlap * rate  # segment重叠的采样点数
    seg_hop_points = (seg_length - overlap) * rate  # segment移动
    start = 0  # 开始指针
    end = start + seg_len_points  # 结尾指针
    segs = []  # 存储切分片段的
    # 一段语音可被分割的数量
    seg_num = int((len(wav) - seg_len_points + seg_hop_points) / seg_hop_points) 
    # 长度不足一个片段的补零处理
    if len(wav) < seg_len_points:
        segs.append(np.hstack([wav, np.array([0] * (seg_len_points - len(wav)))]))
        # segs.append(wav)
    for _ in range(seg_num):  # 从头开始切分
        segs.append(wav[int(start): int(end)])  # 添加新片段
        start += seg_hop_points  # 更新起始指针
        end = start + seg_len_points  # 更新结尾指针
    return segs

(2)预加重:

def pre_emphasis(signal):  # 定义预加重函数
    pre_emphasis = 0.97  
    emphasized_signal = np.append(signal[0],signal[1:] - pre_emphasis * signal[: -1])
    return emphasized_signal  # 返回预加重以后的采样数组

(3)生成梅尔语谱图:先librosa.load加载语音;之后调用cut_wav把语音切分成2秒一段,该函数返回一条语音的所有段;循环,对每一个语音段seg执行:预加重,stft变换,np.abs,平方,mel混频器组,dot,power_to_db操作,就可以得到mel-spectrum;最后生成图象。

def get_spectrogram(root_path, new_path):
    emos = ['ang', 'exc', 'hap', 'neu', 'sad']
    label_dict = {'ang': 0, 'exc': 1, 'hap': 1, 'neu': 2, 'sad': 3}  # 把exc与hap合并
    fold_name = ["Session1F", "Session1M", "Session2F", "Session2M", "Session3F",
                 "Session3M", "Session4F", "Session4M", "Session5F", "Session5M"]
    print("数据收集阶段:")
    time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print(time)
    for name in fold_name:  # 遍历每一折文件夹
        for emo in emos:  # 遍历每一种情感
            files = os.listdir(os.path.join(root_path, name, emo))  # 列出该折中该类情感的文件
            for f_name in files:  # 针对每一个wav文件#D:\Workspace\FLDNetOnIEMOCAP\IEMOCAP\Session1F\ang\Ses01F_impro01_F012.wav
                f_path = os.path.join(root_path, name, emo, f_name)  # 获取文件名
                print(f_path)
                (sig, rate) = librosa.load(f_path, sr=16000)
                print(len(sig))
                segs = cut_wav(sig, seg_length=2, overlap=1.6, rate=rate)  # 切分波形数组为2s长,重叠1.6s片段
                for i, seg in enumerate(segs):
                    y = pre_emphasis(seg)  # 预加重
                    # 对每一段(2秒)segment进行变换
                    linear = librosa.stft(y=y, n_fft=1024, hop_length=512)
                    mag = np.abs(linear)  # (1+n_fft//2, T)  复数的实部:np.abs(D(f,t))频率的振幅
                    mag = mag ** 2  # 平方
                    mel_basis = librosa.filters.mel(sr = rate, n_fft=1024, n_mels=40)  # (n_mels, 1+n_fft//2)   梅尔谱矩阵
                    mel = np.dot(mel_basis, mag)  # (n_mels, t)  梅尔谱=梅尔谱矩阵*幅度谱矩阵 mel spectrogram
                    mel = librosa.power_to_db(mel)  # mel-spec
                    # logmelspec = librosa.amplitude_to_db(melspec)     # 转换到对数刻度
                    plt.figure(figsize=(3, 3))  #
                    librosa.display.specshow(mel, y_axis='mel', fmax=8000, x_axis='time', sr=rate)  # ???
                    # plt.title('Mel spectrogram')
                    plt.axis('off')  # 关闭坐标轴
                    before = f_path[: -4]  # 前缀D:\Workspace\FLDNetOnIEMOCAP\IEMOCAP\Session1F\ang\Ses01F_impro01_F012
                    seg_name = before + "-" + str(i) + ".png"
                    save_path = os.path.join(new_path, name, emo)  # 存储路径创建
                    if not os.path.exists(save_path):
                        os.makedirs(save_path)
                    plt.savefig(os.path.join(save_path, seg_name.split('\\')[-1]), bbox_inches='tight', pad_inches=0)
                    # seg_name.split('\\')[-1] 就是Ses01F_impro01_F012
                    plt.close()

右图显示,session1F中impro04_F031语音的第四段的梅尔语谱图:Ses01F_impro04_F031-3

最后得到的数据结构:

fold0:训练集:1-8-thperson的梅尔语谱图测试集:9-10-thperson的语谱图

fold1:训练集:1-8-thperson的梅尔语谱图测试集:9-10-thperson的语谱图

fold2:训练集:1-8-thperson的梅尔语谱图测试集:9-10-thperson的语谱图

fold3:训练集:1-8-thperson的梅尔语谱图测试集:9-10-thperson的语谱图

fold4:训练集:1-8-thperson的梅尔语谱图测试集:9-10-thperson的语谱图

相关推荐

sharding-jdbc实现`分库分表`与`读写分离`

一、前言本文将基于以下环境整合...

三分钟了解mysql中主键、外键、非空、唯一、默认约束是什么

在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。...

MySQL8行级锁_mysql如何加行级锁

MySQL8行级锁版本:8.0.34基本概念...

mysql使用小技巧_mysql使用入门

1、MySQL中有许多很实用的函数,好好利用它们可以省去很多时间:group_concat()将取到的值用逗号连接,可以这么用:selectgroup_concat(distinctid)fr...

MySQL/MariaDB中如何支持全部的Unicode?

永远不要在MySQL中使用utf8,并且始终使用utf8mb4。utf8mb4介绍MySQL/MariaDB中,utf8字符集并不是对Unicode的真正实现,即不是真正的UTF-8编码,因...

聊聊 MySQL Server 可执行注释,你懂了吗?

前言MySQLServer当前支持如下3种注释风格:...

MySQL系列-源码编译安装(v5.7.34)

一、系统环境要求...

MySQL的锁就锁住我啦!与腾讯大佬的技术交谈,是我小看它了

对酒当歌,人生几何!朝朝暮暮,唯有己脱。苦苦寻觅找工作之间,殊不知今日之事乃我心之痛,难道是我不配拥有工作嘛。自面试后他所谓的等待都过去一段时日,可惜在下京东上的小金库都要见低啦。每每想到不由心中一...

MySQL字符问题_mysql中字符串的位置

中文写入乱码问题:我输入的中文编码是urf8的,建的库是urf8的,但是插入mysql总是乱码,一堆"???????????????????????"我用的是ibatis,终于找到原因了,我是这么解决...

深圳尚学堂:mysql基本sql语句大全(三)

数据开发-经典1.按姓氏笔画排序:Select*FromTableNameOrderByCustomerNameCollateChinese_PRC_Stroke_ci_as//从少...

MySQL进行行级锁的?一会next-key锁,一会间隙锁,一会记录锁?

大家好,是不是很多人都对MySQL加行级锁的规则搞的迷迷糊糊,一会是next-key锁,一会是间隙锁,一会又是记录锁。坦白说,确实还挺复杂的,但是好在我找点了点规律,也知道如何如何用命令分析加...

一文讲清怎么利用Python Django实现Excel数据表的导入导出功能

摘要:Python作为一门简单易学且功能强大的编程语言,广受程序员、数据分析师和AI工程师的青睐。本文系统讲解了如何使用Python的Django框架结合openpyxl库实现Excel...

用DataX实现两个MySQL实例间的数据同步

DataXDataX使用Java实现。如果可以实现数据库实例之间准实时的...

MySQL数据库知识_mysql数据库基础知识

MySQL是一种关系型数据库管理系统;那废话不多说,直接上自己以前学习整理文档:查看数据库命令:(1).查看存储过程状态:showprocedurestatus;(2).显示系统变量:show...

如何为MySQL中的JSON字段设置索引

背景MySQL在2015年中发布的5.7.8版本中首次引入了JSON数据类型。自此,它成了一种逃离严格列定义的方式,可以存储各种形状和大小的JSON文档,例如审计日志、配置信息、第三方数据包、用户自定...

取消回复欢迎 发表评论: