百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

一文带你理解Q-Learning的搜索策略,掌握强化学习最常用算法

ztj100 2024-11-11 15:14 15 浏览 0 评论

王小新 编译自 Medium

量子位 出品 | 公众号 QbitAI

Q-Learning是强化学习中最常用的算法之一。

Medium上有篇文章,讨论了这种算法的一个重要部分:搜索策略。

量子位搬运过来,以下为博客译文:

我们先介绍下有关概念和符号。

强化学习

强化学习(Reinforcement Learning, RL)属于机器学习的一个分支,利用智能体(agent)通过状态感知、选择动作和接收奖励来与环境互动。每一步中,智能体都会通过观察环境状态,选择并执行一个动作,来改变其状态并获得奖励。

马尔可夫决策过程

在传统环境中,马尔可夫决策过程(Markov Decision Processes, MDP)可以解决不少RL问题。这里,我们不会深入讨论MDP的理论,有关MDP算法的更多内容可参考:

https://en.wikipedia.org/wiki/Markov_decision_process

我们用森林火灾来解释下MDP算法,代码实现可使用python MDP Toolbox:

http://pymdptoolbox.readthedocs.io/en/latest/api/example.html

森林管理包括两个动作,等待和砍伐。每年要做出一个决定,一是为林中动物保持古老森林,二是砍伐木材来而赚钱。而且,每年有p概率发生森林火灾,有1-p的概率为森林生长。

先定义MDP算法中一些参数S、A、P、R和γ,其中:

  • S是状态空间(有限),包括3种不同年龄树木,年龄级分别为0-20年、21-40年和40年以上;

  • A是动作空间(有限),即等待或砍伐;

  • P和R分别是转移矩阵和奖励矩阵,很容易写出它的闭合形式;

  • γ是数值在0与1之间的贴现因子,用来平衡短时和未来奖励的关系;

  • 策略π是当前状态下决策的静态分布;

该模型的目标是在未给出MDP动态知识的情况下找到一个最优策略π*。

要注意,如果具有这个动态知识,直接用最优值迭代方法就能找到最优策略。

 1def optimal_value_iteration(mdp, V0, num_iterations, epsilon=0.0001):2 V = np.zeros((num_iterations+1, mdp.S))3 V[0][:] = np.ones(mdp.S)*V04 X = np.zeros((num_iterations+1, mdp.A, mdp.S))5 star = np.zeros((num_iterations+1,mdp.S))6 for k in range(num_iterations):7 for s in range(mdp.S):8 for a in range(mdp.A):9 X[k+1][a][s] = mdp.R[a][s] + mdp.discount*np.sum(mdp.P[a][s].dot(V[k]))10 star[k+1][s] = (np.argmax(X[k+1,:,s]))11 V[k+1][s] = np.max(X[k+1,:,s])12 if (np.max(V[k+1]-V[k])-np.min(V[k+1]-V[k])) < epsilon:13 V[k+1:] = V[k+1]14 star[k+1:] = star[k+1]15 X[k+1:] = X[k+1]16 break17 else: pass18 return star, V, X

奖励变化曲线

最优策略是等到森林处于古老且茂盛的状态时进行砍伐,这容易理解,因为在森林处于最古老的状态时砍伐的奖励是等待让森林生长的奖励的5倍,有r1=10,r2=50。

Q-Learning算法

Q-Learning算法中的“Q”代表着策略π的质量函数(Quality function),该函数能在观察状态s确定动作a后,把每个状态动作对 (s, a) 与总期望的折扣未来奖励进行映射。

Q-Learning算法属于model-free型,这意味着它不会对MDP动态知识进行建模,而是直接估计每个状态下每个动作的Q值。然后,通过在每个状态下选择具有最高Q值的动作,来绘制相应的策略。

如果智能体不断地访问所有状态动作对,则Q-Learning算法会收敛到最优Q函数[1]。

下面我们给出关于Q-Learning算法的Python实现。

要注意,这里的学习率α是w=4/5时的多项式,这里使用了引用[3]的结果。

这里使用的ε-greedy搜索策略,后面会详细介绍。

 1def q_learning(mdp, num_episodes, T_max, epsilon=0.01):2 Q = np.zeros((mdp.S, mdp.A))3 episode_rewards = np.zeros(num_episodes)4 policy = np.ones(mdp.S)5 V = np.zeros((num_episodes, mdp.S))6 N = np.zeros((mdp.S, mdp.A))7 for i_episode in range(num_episodes):8 # epsilon greedy exploration9 greedy_probs = epsilon_greedy_exploration(Q, epsilon, mdp.A)10 state = np.random.choice(np.arange(mdp.S))11 for t in range(T_max):12 # epsilon greedy exploration13 action_probs = greedy_probs(state)14 action = np.random.choice(np.arange(len(action_probs)), p=action_probs)15 next_state, reward = playtransition(mdp, state, action)16 episode_rewards[i_episode] += reward17 N[state, action] += 118 alpha = 1/(t+1)**0.819 best_next_action = np.argmax(Q[next_state]) 20 td_target = reward + mdp.discount * Q[next_state][best_next_action]21 td_delta = td_target - Q[state][action]22 Q[state][action] += alpha * td_delta23 state = next_state24 V[i_episode,:] = Q.max(axis=1)25 policy = Q.argmax(axis=1)
26 return V, policy, episode_rewards, N

奖励变化曲线

探索与利用的平衡

序列学习算法会涉及到一个基本选择:

  • 利用:根据当前信息做出最佳决策;

  • 探索:做出其他决策来收集更多信息。

合理平衡好探索和利用的关系,对智能体的学习能力有重大影响。过多的探索会阻碍智能体最大限度地获得短期奖励,因为选择继续探索可能获得较低的环境奖励。另一方面,由于选择的利用动作可能不是最优的,因此靠不完全知识来利用环境会阻碍长期奖励的最大化。

ε-greedy搜索策略

该策略在每一步利用概率ε来选择随机动作。

这可能是最常用也是最简单的搜索策略,即用ε调整探索动作。在许多实现中,ε会随着时间不断衰减,但也有不少情况,ε会被设置为常数。

1def epsilon_greedy_exploration(Q, epsilon, num_actions):2 def policy_exp(state):3 probs = np.ones(num_actions, dtype=float) * epsilon / num_actions4 best_action = np.argmax(Q[state])5 probs[best_action] += (1.0 - epsilon)6 return probs7 return policy_exp

不确定优先搜索策略

不确定优先(Optimism in Face of Uncertainty)搜索策略,最开始被用来解决随机式多臂赌博机问题 (Stochastic Multi-Armed Bandit),这是一个很经典的决策问题,赌徒要转动一个拥有n个槽的老虎机,转动每个槽都有固定回报概率,目标是找到回报概率最高的槽并且不断地选择它来获取最高的回报。

赌徒面临着利用还是探索的问题,利用机器获得最高的平均奖励或探索其他未玩过的机器,以期望获得更高的奖励。

这个问题与Q-Learning算法中的探索问题非常相似:

  • 利用:在给定状态下选择具有最高Q值的动作;

  • 探索:做出其他决策来探索更多信息,通过选择不了解或不够了解的环境。

不确定优先状态:只要我们对某个槽的回报不确定时不确定手臂的结果,我们就会考虑当前环境来选择最佳的手臂。

不确定优先算法有两方面:

  • 若当前处于最佳环境,那算法会直接选择最佳的手臂;

  • 若当前不处于最佳环境,则算法会尽量降低不确定性。

置信区间上界(Upper Confidence Bound, UCB)是一种常用的不确定优先算法[2],我们把它结合到Q-Learning方法中,有:

  • Q(s, a):状态s下动作a缩放后的Q值;

  • N(t,s,a):在时刻t和状态s下动作a被选择的次数。

此时,智能体的目标为Argmax {Q(s, a)/ a ∈ A},这意味着在状态s中选择具有最高Q值的动作。但是在t时刻Q(s,a)值是未知的。

在t时刻,Q估计值为Q(t, s, a),则有Q(s,a) = + (Q(s,a) ? )。

(Q(s,a) ? )为相应误差项。

霍夫不等式 (Hoeffding’s inequality)可用来处理这类误差。事实上,当t变化时,有:

优先策略可写成:Argmax {Q+(t, s, a)/ a ∈ A},且有:

当β大于0时,执行探索动作;当β为0时,仅利用已有估计。

这种界限方法是目前最常用的,基于这种界限后面也有许多改进工作,包括UCB-V,UCB*,KL-UCB,Bayes-UCB和BESA[4]等。

下面给出经典UCB算法的Python实现,及其在Q-Learning上的应用效果。

1def UCB_exploration(Q, num_actions, beta=1):2 def UCB_exp(state, N, t):3 probs = np.zeros(num_actions, dtype=float)4 Q_ = Q[state,:]/max(Q[state,:]) + np.sqrt(beta*np.log(t+1)/(2*N[state]))5 best_action = Q_.argmax()6 probs[best_action] = 17 return probs8 return UCB_exp

奖励变化曲线

UCB搜索算法应该能很快地获得高额奖励,但是前期搜索对训练过程的影响较大,有希望用来解决更复杂的多臂赌博机问题,因为这种方法能帮助智能体跳出局部最优值。

下面是两种策略的对比图。

总结与展望

Q-Learning是强化学习中最常用的算法之一。在这篇文章中,我们讨论了搜索策略的重要性和如何用UCB搜索策略来替代经典的ε-greedy搜索算法。

更多更细致的优先策略可以被用到Q-Learning算法中,以平衡好利用和探索的关系。

参考文献

[1] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of stochastic iterative dynamic programming algorithms” Neural computation, vol. 6, no. 6, pp. 1185–1201, 1994.

[2] P. Auer, “Using Confidence Bounds for Exploitation-Exploration Trade-offs”, Journal of Machine Learning Research 3 397–422, 2002.

[3] E. Even-Dar, and Y. Mansour, “Learning Rates for Q-learning”, Journal of Machine Learning Research 5 1–25, 2003.

[4] A. Baransi, O.-A. Maillard, and S. Mannor, “Sub-sampling for multi-armed bandits”, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 115–131, 2014.

原文:https://medium.com/sequential-learning/optimistic-q-learning-b9304d079e11

— 完 —

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

?'?' ? 追踪AI技术和产品新动态

相关推荐

30天学会Python编程:16. Python常用标准库使用教程

16.1collections模块16.1.1高级数据结构16.1.2示例...

强烈推荐!Python 这个宝藏库 re 正则匹配

Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...

Python爬虫中正则表达式的用法,只讲如何应用,不讲原理

Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...

Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)

实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...

python爬虫教程之爬取当当网 Top 500 本五星好评书籍

我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...

深入理解re模块:Python中的正则表达式神器解析

在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...

如何使用正则表达式和 Python 匹配不以模式开头的字符串

需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...

先Mark后用!8分钟读懂 Python 性能优化

从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...

Python“三步”即可爬取,毋庸置疑

声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...

简单学Python——re库(正则表达式)2(split、findall、和sub)

1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...

Lavazza拉瓦萨再度牵手上海大师赛

阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...

ArkUI-X构建Android平台AAR及使用

本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...

Deepseek写歌详细教程(怎样用deepseek写歌功能)

以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...

“AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测

“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...

AI音乐制作神器揭秘!3款工具让你秒变高手

在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...

取消回复欢迎 发表评论: