使用自编码器进行图像去噪(自编码器提取图像特征)
ztj100 2024-11-08 15:07 24 浏览 0 评论
在这篇文章中,你将了解自编码器是如何工作的,以及为什么它们被用于医学图像去噪。
正确理解图像信息在医学等领域是至关重要的。去噪可以集中在清理旧的扫描图像上,或者有助于癌症生物学中的特征选择。噪音的存在可能会混淆疾病的识别和分析,从而导致不必要的死亡。因此,医学图像去噪是一项必不可少的预处理技术。
所谓的自编码器技术已被证明是非常有用的图像去噪。
自编码器由编码器模型和解码器模型两个相互连接的人工神经网络组成。自动编码器的目标是找到一种将输入图像编码为压缩格式(也称为潜在空间)的方法,使解码后的图像版本尽可能接近输入图像。
Autoencoders如何工作
该网络提供了原始图像x,以及它们的噪声版本x~。该网络试图重构其输出x ',使其尽可能接近原始图像x。通过这样做,它学会了如何去噪图像。
如图所示,编码器模型将输入转换为一个小而密集的表示。解码器模型可以看作是一个生成模型,它能够生成特定的特征。
编码器和解码器网络通常作为一个整体进行训练。损失函数判断网络创建的输出x '与原始输入x的差别。
通过这样做,编码器学会了在有限的潜在空间中保留尽可能多的相关信息,并巧妙地丢弃不相关的部分,如噪声。解码器学习采取压缩潜在信息,并重建它成为一个完全无错误的输入。
如何实现自动编码器
让我们实现一个自动编码器去噪手写数字。输入是一个28x28的灰度图像,构建一个784个元素的向量。
编码器网络是一个由64个神经元组成的稠密层。因此,潜在空间将有维数64。该层中的每个神经元上都附加了一个ReLu激活函数,根据每个神经元的输入是否与自编码器的预测相关,决定该神经元是否应该被激活。激活函数还有助于将每个神经元的输出规整为1到0之间的范围。
解码器网络是由784个神经元组成的单一致密层,对应28x28灰度化输出图像。sigmoid激活函数用于比较编码器输入和解码器输出。
采用二元交叉熵作为损失函数,Adadelta作为最小化损失函数的优化器。
import keras
from keras.layers import Input, Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
# input layer
input_img = Input(shape=(784,))
# autoencoder
encoding_dim = 32
encoded = Dense(encoding_dim, activation='relu')(input_img)
encoded_input = Input(shape=(encoding_dim,))
decoded = Dense(784, activation='sigmoid')(encoded)
autoencoder = Model(input_img, decoded)
decoder_layer = autoencoder.layers[-1]
decoder = Model(encoded_input, decoder_layer(encoded_input))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
MNIST数据集是一个著名的手写数字数据库,广泛用于机器学习领域的训练和测试。我们在这里使用它产生合成噪声数字应用高斯噪声矩阵和剪切图像之间的0和1。
import matplotlib.pyplot as plt
import random
%matplotlib inline
# get MNIST images, clean and with noise
def get_mnist(noise_factor=0.5):
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
return x_train, x_test, x_train_noisy, x_test_noisy, y_train, y_test
x_train, x_test, x_train_noisy, x_test_noisy, y_train, y_test = get_mnist()
# plot n random digits
# use labels to specify which digits to plot
def plot_mnist(x, y, n=10, randomly=False, labels=[]):
plt.figure(figsize=(20, 2))
if len(labels)>0:
x = x[np.isin(y, labels)]
for i in range(1,n,1):
ax = plt.subplot(1, n, i)
if randomly:
j = random.randint(0,x.shape[0])
else:
j = i
plt.imshow(x[j].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
plot_mnist(x_test_noisy, y_test, randomly=True)
你还能认出数字,但有些几乎认不出来。因此,我们想使用我们的自动编码器学习恢复原始数字。我们通过拟合超过100个epoch的自编码器,同时使用噪声数字作为输入,原始去噪数字作为目标。
因此,自编码器将最小化噪声和干净图像之间的差异。通过这样做,它将学会如何从任何看不见的手写数字中去除噪声,产生了类似的噪声。
# flatten the 28x28 images into vectors of size 784.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
x_train_noisy = x_train_noisy.reshape((len(x_train_noisy), np.prod(x_train_noisy.shape[1:])))
x_test_noisy = x_test_noisy.reshape((len(x_test_noisy), np.prod(x_test_noisy.shape[1:])))
#training
history = autoencoder.fit(x_train_noisy, x_train,
epochs=100,
batch_size=128,
shuffle=True,
validation_data=(x_test_noisy, x_test))
# plot training performance
def plot_training_loss(history):
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
plot_training_loss(history)
如何用自编码器去噪
现在我们可以使用经过训练的自动编码器来清除不可见的噪声输入图像,并将它们与被清除的图像进行对比。
# plot de-noised images
def plot_mnist_predict(x_test, x_test_noisy, autoencoder, y_test, labels=[]):
if len(labels)>0:
x_test = x_test[np.isin(y_test, labels)]
x_test_noisy = x_test_noisy[np.isin(y_test, labels)]
decoded_imgs = autoencoder.predict(x_test)
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test_noisy[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
return decoded_imgs, x_test
decoded_imgs_test, x_test_new = plot_mnist_predict(x_test, x_test_noisy, autoencoder, y_test)
总的来说,噪音被很好地消除了。人工输入图像上的白点已经从清洗后的图像中消失。这些数字可以被视觉识别。例如,有噪声的数字' 4 '根本不可读,现在,我们可以读取它的清洁版本。
去噪对信息质量有不利影响。重建的数字有点模糊。解码器添加了一些原始图像中没有的特征,例如下面的第8位和第9位数字几乎无法识别。
在本文中,我描述了一种图像去噪技术,并提供了如何使用Python构建自动编码器的实用指南。放射科医生通常使用自动编码器去噪MRI、US、x射线或皮肤病变图像。这些自动编码器是在大型数据集上训练的,比如印第安纳大学的胸部x射线数据库,其中包含7470张胸部x射线图像。去噪自动编码器可以通过卷积层来增强,以产生更有效的结果。
作者:Michel Kana, Ph.D
deephub翻译组
相关推荐
- 如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL
-
阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...
- Python数据分析:探索性分析
-
写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...
- C++基础语法梳理:算法丨十大排序算法(二)
-
本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...
- C 语言的标准库有哪些
-
C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...
- [深度学习] ncnn安装和调用基础教程
-
1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...
- 用rust实现经典的冒泡排序和快速排序
-
1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...
- ncnn+PPYOLOv2首次结合!全网最详细代码解读来了
-
编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...
- C++特性使用建议
-
1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...
- Qt4/5升级到Qt6吐血经验总结V202308
-
00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...
- 到底什么是C++11新特性,请看下文
-
C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...
- 掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!
-
C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...
- 经典算法——凸包算法
-
凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...
- 一起学习c++11——c++11中的新增的容器
-
c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...
- C++ 编程中的一些最佳实践
-
1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- idea eval reset (50)
- vue dispatch (70)
- update canceled (42)
- order by asc (53)
- spring gateway (67)
- 简单代码编程 贪吃蛇 (40)
- transforms.resize (33)
- redisson trylock (35)
- 卸载node (35)
- np.reshape (33)
- torch.arange (34)
- node卸载 (33)
- npm 源 (35)
- vue3 deep (35)
- win10 ssh (35)
- exceptionininitializererror (33)
- vue foreach (34)
- idea设置编码为utf8 (35)
- vue 数组添加元素 (34)
- std find (34)
- tablefield注解用途 (35)
- python str转json (34)
- java websocket客户端 (34)
- tensor.view (34)
- java jackson (34)