百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

PyTorch 深度学习实战(11):强化学习与深度 Q 网络(DQN)

ztj100 2025-04-26 22:45 11 浏览 0 评论

在之前的文章中,我们介绍了神经网络、卷积神经网络(CNN)、循环神经网络(RNN)、Transformer 等多种深度学习模型,并应用于图像分类、文本分类、时间序列预测等任务。本文将介绍强化学习的基本概念,并使用 PyTorch 实现一个经典的深度 Q 网络(DQN)来解决强化学习中的经典问题——CartPole。

一、强化学习基础

强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它通过智能体(Agent)与环境(Environment)的交互来学习策略,以最大化累积奖励。强化学习的核心思想是通过试错来学习,智能体在环境中采取行动,观察结果,并根据奖励信号调整策略。

1. 强化学习的基本要素

  • 智能体(Agent):学习并做出决策的主体。
  • 环境(Environment):智能体交互的外部世界。
  • 状态(State):环境在某一时刻的描述。
  • 动作(Action):智能体在某一状态下采取的行动。
  • 奖励(Reward):智能体采取动作后,环境返回的反馈信号。
  • 策略(Policy):智能体在给定状态下选择动作的规则。
  • 价值函数(Value Function):评估在某一状态下采取某一动作的长期回报。

2. Q-Learning 与深度 Q 网络(DQN)

Q-Learning 是一种经典的强化学习算法,它通过学习一个 Q 函数来评估在某一状态下采取某一动作的长期回报。Q 函数的更新公式为:

深度 Q 网络(DQN)将 Q-Learning 与深度学习结合,使用神经网络来近似 Q 函数。DQN 通过经验回放(Experience Replay)和目标网络(Target Network)来稳定训练过程。

二、CartPole 问题实战

CartPole 是强化学习中的经典问题,目标是控制一个小车(Cart)使其上的杆子(Pole)保持直立。我们将使用 PyTorch 实现一个 DQN 来解决这个问题。

1. 问题描述

CartPole 环境的状态空间包括小车的位置、速度、杆子的角度和角速度。动作空间包括向左或向右移动小车。智能体每保持杆子直立一步,就会获得 +1 的奖励,当杆子倾斜超过一定角度或小车移动超出范围时,游戏结束。

2. 实现步骤

  1. 安装并导入必要的库。
  2. 定义 DQN 模型。
  3. 定义经验回放缓冲区。
  4. 定义 DQN 训练过程。
  5. 测试模型并评估性能。

3. 代码实现

import gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
from collections import deque
import matplotlib.pyplot as plt

# 设置 Matplotlib 支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置字体为 SimHei(黑体)
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 1. 安装并导入必要的库
env = gym.make('CartPole-v1')

# 2. 定义 DQN 模型
class DQN(nn.Module):
    def __init__(self, state_size, action_size):
        super(DQN, self).__init__()
        self.fc1 = nn.Linear(state_size, 64)
        self.fc2 = nn.Linear(64, 64)
        self.fc3 = nn.Linear(64, action_size)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 3. 定义经验回放缓冲区
class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = deque(maxlen=capacity)

    def push(self, state, action, reward, next_state, done):
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size):
        state, action, reward, next_state, done = zip(*random.sample(self.buffer, batch_size))
        return np.array(state), np.array(action), np.array(reward), np.array(next_state), np.array(done)

    def __len__(self):
        return len(self.buffer)

# 4. 定义 DQN 训练过程
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
model = DQN(state_size, action_size)
target_model = DQN(state_size, action_size)
target_model.load_state_dict(model.state_dict())
optimizer = optim.Adam(model.parameters(), lr=0.001)
buffer = ReplayBuffer(10000)

def train(batch_size, gamma=0.99):
    if len(buffer) < batch_size:
        return
    state, action, reward, next_state, done = buffer.sample(batch_size)
    state = torch.FloatTensor(state)
    next_state = torch.FloatTensor(next_state)
    action = torch.LongTensor(action)
    reward = torch.FloatTensor(reward)
    done = torch.FloatTensor(done)

    q_values = model(state)
    next_q_values = target_model(next_state)
    q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1)
    next_q_value = next_q_values.max(1)[0]
    expected_q_value = reward + gamma * next_q_value * (1 - done)

    loss = nn.MSELoss()(q_value, expected_q_value.detach())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

# 5. 测试模型并评估性能
def test(env, model, episodes=10):
    total_reward = 0
    for _ in range(episodes):
        state = env.reset()
        done = False
        while not done:
            state = torch.FloatTensor(state).unsqueeze(0)
            action = model(state).max(1)[1].item()
            next_state, reward, done, _ = env.step(action)
            total_reward += reward
            state = next_state
    return total_reward / episodes

# 训练过程
episodes = 500
batch_size = 64
gamma = 0.99
epsilon = 1.0
epsilon_min = 0.01
epsilon_decay = 0.995
rewards = []

for episode in range(episodes):
    state = env.reset()
    done = False
    total_reward = 0

    while not done:
        if random.random() < epsilon:
            action = env.action_space.sample()
        else:
            state_tensor = torch.FloatTensor(state).unsqueeze(0)
            action = model(state_tensor).max(1)[1].item()

        next_state, reward, done, _ = env.step(action)
        buffer.push(state, action, reward, next_state, done)
        state = next_state
        total_reward += reward

        train(batch_size, gamma)

    epsilon = max(epsilon_min, epsilon * epsilon_decay)
    rewards.append(total_reward)

    if (episode + 1) % 50 == 0:
        avg_reward = test(env, model)
        print(f"Episode: {episode + 1}, Avg Reward: {avg_reward:.2f}")

# 6. 可视化训练结果
plt.plot(rewards)
plt.xlabel("Episode")
plt.ylabel("Total Reward")
plt.title("DQN 训练过程")
plt.show()

三、代码解析

1.环境与模型定义

  • 使用 gym 创建 CartPole 环境。
  • 定义 DQN 模型,包含三个全连接层。

2.经验回放缓冲区

  • 使用 deque 实现经验回放缓冲区,存储状态、动作、奖励等信息。

3.训练过程

  • 使用 epsilon-greedy 策略进行探索与利用。
  • 通过经验回放缓冲区采样数据进行训练,更新模型参数。

4.测试过程

  • 在测试环境中评估模型性能,计算平均奖励。

5.可视化

  • 绘制训练过程中的总奖励曲线。

四、运行结果

运行上述代码后,你将看到以下输出:

  • 训练过程中每 50 个 episode 打印一次平均奖励。
  • 训练结束后,绘制训练过程中的总奖励曲线。


五、总结

本文介绍了强化学习的基本概念,并使用 PyTorch 实现了一个深度 Q 网络(DQN)来解决 CartPole 问题。通过这个例子,我们学习了如何定义 DQN 模型、使用经验回放缓冲区、训练模型以及评估性能。

在下一篇文章中,我们将探讨更复杂的强化学习算法,如 Actor-Critic 和 Proximal Policy Optimization (PPO)。敬请期待!

代码实例说明

  • 本文代码可以直接在 Jupyter Notebook 或 Python 脚本中运行。
  • 如果你有 GPU,可以将模型和数据移动到 GPU 上运行,例如:model = model.to('cuda')state = state.to('cuda')

希望这篇文章能帮助你更好地理解强化学习的基础知识!如果有任何问题,欢迎在评论区留言讨论。

相关推荐

如何将数据仓库迁移到阿里云 AnalyticDB for PostgreSQL

阿里云AnalyticDBforPostgreSQL(以下简称ADBPG,即原HybridDBforPostgreSQL)为基于PostgreSQL内核的MPP架构的实时数据仓库服务,可以...

Python数据分析:探索性分析

写在前面如果你忘记了前面的文章,可以看看加深印象:Python数据处理...

CSP-J/S冲奖第21天:插入排序

...

C++基础语法梳理:算法丨十大排序算法(二)

本期是C++基础语法分享的第十六节,今天给大家来梳理一下十大排序算法后五个!归并排序...

C 语言的标准库有哪些

C语言的标准库并不是一个单一的实体,而是由一系列头文件(headerfiles)组成的集合。每个头文件声明了一组相关的函数、宏、类型和常量。程序员通过在代码中使用#include<...

[深度学习] ncnn安装和调用基础教程

1介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如QQ,Qzon...

用rust实现经典的冒泡排序和快速排序

1.假设待排序数组如下letmutarr=[5,3,8,4,2,7,1];...

ncnn+PPYOLOv2首次结合!全网最详细代码解读来了

编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...

C++特性使用建议

1.引用参数使用引用替代指针且所有不变的引用参数必须加上const。在C语言中,如果函数需要修改变量的值,参数必须为指针,如...

Qt4/5升级到Qt6吐血经验总结V202308

00:直观总结增加了很多轮子,同时原有模块拆分的也更细致,估计为了方便拓展个管理。把一些过度封装的东西移除了(比如同样的功能有多个函数),保证了只有一个函数执行该功能。把一些Qt5中兼容Qt4的方法废...

到底什么是C++11新特性,请看下文

C++11是一个比较大的更新,引入了很多新特性,以下是对这些特性的详细解释,帮助您快速理解C++11的内容1.自动类型推导(auto和decltype)...

掌握C++11这些特性,代码简洁性、安全性和性能轻松跃升!

C++11(又称C++0x)是C++编程语言的一次重大更新,引入了许多新特性,显著提升了代码简洁性、安全性和性能。以下是主要特性的分类介绍及示例:一、核心语言特性1.自动类型推导(auto)编译器自...

经典算法——凸包算法

凸包算法(ConvexHull)一、概念与问题描述凸包是指在平面上给定一组点,找到包含这些点的最小面积或最小周长的凸多边形。这个多边形没有任何内凹部分,即从一个多边形内的任意一点画一条线到多边形边界...

一起学习c++11——c++11中的新增的容器

c++11新增的容器1:array当时的初衷是希望提供一个在栈上分配的,定长数组,而且可以使用stl中的模板算法。array的用法如下:#include<string>#includ...

C++ 编程中的一些最佳实践

1.遵循代码简洁原则尽量避免冗余代码,通过模块化设计、清晰的命名和良好的结构,让代码更易于阅读和维护...

取消回复欢迎 发表评论: