百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分类 > 正文

开源的对比语言-图像预训练模型:OpenCLIP

ztj100 2025-04-26 22:45 25 浏览 0 评论

这里是Aideas,每日分享AI相关资讯。本文由Aideas Agent整理并推荐。项目地址:/mlfoundations/open_clip, 程序语言:Python, 收藏: 11,291, 分支: 1,073, 今日收藏: 17 stars today。


OpenAI的CLIP(对比语言-图像预训练)开源实现。OpenCLIP在各种数据源和计算预算上训练了几个模型,范围从小规模实验到更大规模的运行,包括在数据集上训练的模型,如LAION-400M、LAION-2B和DataComp-1B。

OpenCLIP

训练的一些最佳模型及其零-shot ImageNet-1k 准确率如下所示,以及OpenAI训练的ViT-L模型和其他最先进的开源替代品(所有模型均可通过OpenCLIP加载):

  • 模型:ConvNext-Base,训练数据:LAION-2B,分辨率:256px,看到的样本数:13B,ImageNet零-shot准确率:71.5%
  • 模型:ConvNext-Large,训练数据:LAION-2B,分辨率:320px,看到的样本数:29B,ImageNet零-shot准确率:76.9%
  • 模型:ConvNext-XXLarge,训练数据:LAION-2B,分辨率:256px,看到的样本数:34B,ImageNet零-shot准确率:79.5%
  • 模型:ViT-B/32,训练数据:DataComp-1B,分辨率:256px,看到的样本数:34B,ImageNet零-shot准确率:72.8%
  • 模型:ViT-B/16,训练数据:DataComp-1B,分辨率:224px,看到的样本数:13B,ImageNet零-shot准确率:73.5%
  • 模型:ViT-L/14,训练数据:LAION-2B,分辨率:224px,看到的样本数:32B,ImageNet零-shot准确率:75.3%
  • 模型:ViT-H/14,训练数据:LAION-2B,分辨率:224px,看到的样本数:32B,ImageNet零-shot准确率:78.0%
  • 模型:ViT-L/14,训练数据:DataComp-1B,分辨率:224px,看到的样本数:13B,ImageNet零-shot准确率:79.2%
  • 模型:ViT-G/14,训练数据:LAION-2B,分辨率:224px,看到的样本数:34B,ImageNet零-shot准确率:80.1%
  • 模型:ViT-L/14-quickgelu,训练数据:WIT,分辨率:224px,看到的样本数:13B,ImageNet零-shot准确率:75.5%
  • 模型:ViT-SO400M/14,训练数据:WebLI,分辨率:224px,看到的样本数:45B,ImageNet零-shot准确率:82.0%
  • 模型:ViT-L/14,训练数据:DFN-2B,分辨率:224px,看到的样本数:39B,ImageNet零-shot准确率:82.2%
  • 模型:ViT-SO400M-14-SigLIP-384,训练数据:WebLI,分辨率:384px,看到的样本数:45B,ImageNet零-shot准确率:83.1%
  • 模型:ViT-H/14-quickgelu,训练数据:DFN-5B,分辨率:224px,看到的样本数:39B,ImageNet零-shot准确率:83.4%
  • 模型:ViT-H-14-378-quickgelu,训练数据:DFN-5B,分辨率:378px,看到的样本数:44B,ImageNet零-shot准确率:84.4%

具有额外模型特定细节的模型卡可以在Hugging Face Hub的OpenCLIP库标签下找到。

注意,src/open_clip/中的部分建模和标记器代码是OpenAI官方存储库的改编。

用法

安装OpenCLIP:

pip install open_clip_torch

以下是使用OpenCLIP的示例代码:

import torch
from PIL import Image
import open_clip

model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
model.eval()  # 模型默认处于训练模式,这会影响某些使用BatchNorm或随机深度的模型
tokenizer = open_clip.get_tokenizer('ViT-B-32')

image = preprocess(Image.open("docs/CLIP.png")).unsqueeze(0)
text = tokenizer(["一个图表", "一只狗", "一只猫"])

with torch.no_grad(), torch.autocast("cuda"):
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features /= text_features.norm(dim=-1, keepdim=True)

    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("标签概率:", text_probs)  # 打印: [[1., 0., 0.]]

如果模型使用timm图像编码器(convnext,siglip,eva等),请确保安装最新的timm。如果看到图像编码器的“未知模型”错误,请升级timm。如果模型使用transformers标记器,请确保安装transformers。要高效计算数十亿个嵌入,您可以使用clip-retrieval。

预训练模型

这里提供一个简单的模型接口来实例化预训练和未训练的模型。要查看可用的预训练模型,请使用以下代码片段。

>>> import open_clip
>>> open_clip.list_pretrained()

注意:许多现有检查点使用原始OpenAI模型的QuickGELU激活。此激活实际上在最近版本的PyTorch中效率低于原生torch.nn.GELU。模型默认现在是nn.GELU,因此应使用带有-quickgelu后缀的模型定义来使用OpenCLIP预训练权重。所有OpenAI预训练权重将始终默认为QuickGELU。还可以使用非-quickgelu模型定义与使用QuickGELU的预训练权重,但会出现准确性下降,经过微调后,这种下降可能会在较长的运行中消失。未来训练的模型将使用nn.GELU。

加载模型

模型可以使用
open_clip.create_model_and_transforms
加载,如下面的示例所示。模型名称和相应的pretrained键与open_clip.list_pretrained()的输出兼容。

pretrained参数还接受本地路径,例如/path/to/my/b32.pt。还可以通过这种方式从huggingface加载检查点。

# pretrained也接受本地路径
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k') 

微调分类任务

OpenCLIP专注于训练CLIP模型。要在下游分类任务(例如ImageNet)上微调训练过的零-shot模型,请参见WiSE-FT。

数据

要将数据集下载为webdataset,建议使用img2dataset。

YFCC和其他数据集

除了通过CSV文件指定训练数据外,OpenCLIP还支持webdataset,这对于大规模数据集是推荐的。预期格式是一系列.tar文件。每个.tar文件应包含每个训练示例的两个文件,一个是图像,另一个是相应的文本。这两个文件应具有相同的名称但不同的扩展名。例如,shard_001.tar可以包含文件,如abc.jpgabc.txt。可以从Multimedia Commons下载YFCC数据集。

训练CLIP

安装

首先创建一个虚拟环境:

python3 -m venv .env
source .env/bin/activate
pip install -U pip

然后,可以通过pip install 'open_clip_torch[training]'安装用于训练的openclip。

示例单进程运行代码:

python -m open_clip_train.main \
    --save-frequency 1 \
    --zeroshot-frequency 1 \
    --report-to tensorboard \
    --train-data="/path/to/train_data.csv"  \
    --val-data="/path/to/validation_data.csv"  \
    --csv-img-key filepath \
    --csv-caption-key title \
    --imagenet-val=/path/to/imagenet/root/val/ \
    --warmup 10000 \
    --batch-size=128 \
    --lr=1e-3 \
    --wd=0.1 \
    --epochs=30 \
    --workers=8 \
    --model RN50

注意:imagenet-val是ImageNet的验证集的路径,而不是训练集!如果不想在整个训练过程中对ImageNet进行零-shot评估,可以删除此参数。请注意,val文件夹应包含子文件夹。如果没有,请使用脚本进行处理。

多GPU及以上

对于较大的数据集(例如Laion2B),建议将--train-num-samples设置为低于完整纪元的值,例如--train-num-samples 135646078,以便在进行替换采样时与--dataset-resampled结合使用。这允许频繁检查点以进行更频繁的评估。

断点续训:

python -m open_clip_train.main \
    --train-data="/path/to/train_data.csv" \
    --val-data="/path/to/validation_data.csv"  \
    --resume /path/to/checkpoints/epoch_K.pt


使用 CoCa 生成文本

import open_clip
import torch
from PIL import Image

model, _, transform = open_clip.create_model_and_transforms(
  model_name="coca_ViT-L-14",
  pretrained="mscoco_finetuned_laion2B-s13B-b90k"
)

im = Image.open("cat.jpg").convert("RGB")
im = transform(im).unsqueeze(0)

with torch.no_grad(), torch.cuda.amp.autocast():
  generated = model.generate(im)

print(open_clip.decode(generated[0]).split("<end_of_text>")[0].replace("<start_of_text>", ""))

#AI软件技巧#

相关推荐

30天学会Python编程:16. Python常用标准库使用教程

16.1collections模块16.1.1高级数据结构16.1.2示例...

强烈推荐!Python 这个宝藏库 re 正则匹配

Python的re模块(RegularExpression正则表达式)提供各种正则表达式的匹配操作。...

Python爬虫中正则表达式的用法,只讲如何应用,不讲原理

Python爬虫:正则的用法(非原理)。大家好,这节课给大家讲正则的实际用法,不讲原理,通俗易懂的讲如何用正则抓取内容。·导入re库,这里是需要从html这段字符串中提取出中间的那几个文字。实例一个对...

Python数据分析实战-正则提取文本的URL网址和邮箱(源码和效果)

实现功能:Python数据分析实战-利用正则表达式提取文本中的URL网址和邮箱...

python爬虫教程之爬取当当网 Top 500 本五星好评书籍

我们使用requests和re来写一个爬虫作为一个爱看书的你(说的跟真的似的)怎么能发现好书呢?所以我们爬取当当网的前500本好五星评书籍怎么样?ok接下来就是学习python的正确姿...

深入理解re模块:Python中的正则表达式神器解析

在Python中,"re"是一个强大的模块,用于处理正则表达式(regularexpressions)。正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换或提取特定模式...

如何使用正则表达式和 Python 匹配不以模式开头的字符串

需要在Python中使用正则表达式来匹配不以给定模式开头的字符串吗?如果是这样,你可以使用下面的语法来查找所有的字符串,除了那些不以https开始的字符串。r"^(?!https).*&...

先Mark后用!8分钟读懂 Python 性能优化

从本文总结了Python开发时,遇到的性能优化问题的定位和解决。概述:性能优化的原则——优化需要优化的部分。性能优化的一般步骤:首先,让你的程序跑起来结果一切正常。然后,运行这个结果正常的代码,看看它...

Python“三步”即可爬取,毋庸置疑

声明:本实例仅供学习,切忌遵守robots协议,请不要使用多线程等方式频繁访问网站。#第一步导入模块importreimportrequests#第二步获取你想爬取的网页地址,发送请求,获取网页内...

简单学Python——re库(正则表达式)2(split、findall、和sub)

1、split():分割字符串,返回列表语法:re.split('分隔符','目标字符串')例如:importrere.split(',','...

Lavazza拉瓦萨再度牵手上海大师赛

阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享。Lavazza拉瓦萨再度牵手上海大师赛标题:2024上海大师赛:网球与咖啡的浪漫邂逅在2024年的上海劳力士大师赛上,拉瓦萨咖啡再次成为官...

ArkUI-X构建Android平台AAR及使用

本教程主要讲述如何利用ArkUI-XSDK完成AndroidAAR开发,实现基于ArkTS的声明式开发范式在android平台显示。包括:1.跨平台Library工程开发介绍...

Deepseek写歌详细教程(怎样用deepseek写歌功能)

以下为结合DeepSeek及相关工具实现AI写歌的详细教程,涵盖作词、作曲、演唱全流程:一、核心流程三步法1.AI生成歌词-打开DeepSeek(网页/APP/API),使用结构化提示词生成歌词:...

“AI说唱解说影视”走红,“零基础入行”靠谱吗?本报记者实测

“手里翻找冻鱼,精心的布局;老漠却不言语,脸上带笑意……”《狂飙》剧情被写成歌词,再配上“科目三”背景音乐的演唱,这段1分钟30秒的视频受到了无数网友的点赞。最近一段时间随着AI技术的发展,说唱解说影...

AI音乐制作神器揭秘!3款工具让你秒变高手

在音乐创作的领域里,每个人都有一颗想要成为大师的心。但是面对复杂的乐理知识和繁复的制作过程,许多人的热情被一点点消磨。...

取消回复欢迎 发表评论: